Advertisement

A cadmium budget for the Lot-Garonne fluvial system (France)

  • Gérard Blanc
  • Yvon Lapaquellerie
  • Noèle Maillet
  • Pierre Anschutz
Chapter
Part of the Developments in Hydrobiology book series (DIHY, volume 146)

Abstract

Routine measurements of river discharge and total suspended sediment concentration (TSS) are combined with regular analyses for particulate and dissolved cadmium to produce a box model that allows us to propose a cadmium mass balance for the Lot-Garonne man-influenced river system (8400 km2). Nearly half the cadmium in the Garonne river is supplied by the tributary Lot river. Cadmium input onto the Lot river comprises wet deposition from the atmosphere, molecular diffusion at the sediment-water interface, surface-water runoff and discharge from the leaching of waste at a zinc refining plant. Approximately 85% of the cadmium in the Lot river is derived from anthropogenic origin. Cadmium in the industrial discharge is 80% dissolved and 20% in the particulate phase (4.2 and 1.1 t yr−1, respectively). Total inputs are estimated at 4.81 t yr−1 and 1.54 t yr−1 for the dissolved cadmium and for the particulate phase, respectively. Budgeting estimates an output onto the Garonne river of 0.54 t yr−1 for the dissolved cadmium (about 8%) and 6.13 t yr−1 for the particulate cadmium (about 92%) indicating that downstream sediment-associated cadmium fluxes are enhanced by the 4.27 t yr−1 removed from solution and the 0.32 t yr−1 remobilized by the erosion of sediment blanketing the Lot river bed. These figures are found to be comparable with those generated by a dilution model which suggests that 97% of dissolved cadmium is taken up by the particulate phase over 0.5 km downstream from the primary anthropogenic source.

Key words

pollution cadmium budget Lot-Garonne rivers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agence de l’eau Adour-Garonne, 1995. Estimation des flux de cadmium et de zinc vehiculés par le Riou-Mort. Rapport interne février: 1–13.Google Scholar
  2. Boulier, B., 1981. Synthèse des résultats dc la surveillance des micropolluants dans la matière vivante. Ministère de l’Environnement, Bulletin du Réseau National d’Observation. 17: 115–174.Google Scholar
  3. Chiffoleau, J. F., D.Auger, E. Chartier, I. Truquez, 1997. Identification et devenir des apports intra-estuariens de metaux-traces dans l’estuaire de la Seine. In Programme scientifique Seine-aval, Rapport 1996/FIN-3: 5–23.Google Scholar
  4. Danielsson, L. G., B. Magnusson. S. Westerlund, K. Zhang, 1982. Trace metal determination in estuarine waters by electrothermal AAS after extraction of dithiocarbonate complexes in freon. Anal. Chim. Acta. 144: 159–175.CrossRefGoogle Scholar
  5. Elbaz-Poulichet, F., 1988. Apports fluviatiles et estuariens de plomb, cadmium et cuivre aux océans, comparaisons avec l’apport atmosphérique. Thèse, Université Paris VI. 210 pp.Google Scholar
  6. Etcheber, H., J. M. Jouanneau, 1980. Comparison of the different methods for the recovery of suspended matter from estuarine waters deposition, filtration and centrifugation: consequences for the determination of some heavy metals. Estuar. Coast. mar. se. II: 701–707.Google Scholar
  7. Idlafkih, Z., D. Cossa, M. Meybeck, 1995. Comportements des contaminants en trace dissous et particulaires (As, Cd, Cu, Hg, Pb, Zn) dans la Seine. Hydroecol. Appl. 7: 127–150.CrossRefGoogle Scholar
  8. Jouanneau, J. M., B. Bouffer, J. F. Chiffoleau, C. Latouche, I. Phillips, 1990. Cadmium in the Gironde fluvioestuarine system: behaviour and flow. Sci. Total Envir. 97 /98: 465–469.CrossRefGoogle Scholar
  9. Jouanneau, J. M., Y. Lapaquellerie, C. Latouche, 1993. Origin and pathways of Cd contamination in the Gironde estuary, Garonne river and tributaries. In J. P. Vernet (ed.), Environment Contamination. Elsevier: 373–389.Google Scholar
  10. Kraepiel, A. M. L., J. F. Chiffoleau, J-M. Martin, F. M. M. Morel, 1997. Geochemistry of trace metals in the Gironde estuary. Geochimica et Cosmochimica Acta. 61: 1421–1436.CrossRefGoogle Scholar
  11. Lapaquellerie, Y., J. M. Jouanneau, N. Maillet, C. Latouche, 1995. Pollution en cadmium dans les sédiments du Lot (France) et calcul du stock de polluant. Envir. Tech. 16: 1145–1154.Google Scholar
  12. Lapaquellerie, Y., N. Maillet, J. M. Jouanneau, J. P. Coakley, C. Latouche, 1996. Flux de matières en suspension et de cadmium dans le Lot. Hydroecol. Appl. 8: 173–191.CrossRefGoogle Scholar
  13. Latouche, C., 1988. La pollution en cadmium de l’Estuaire de la Gironde, Bull. Inst. Géol. Bassin d’Aquitaine 44: 15–21.Google Scholar
  14. Latouche, C., 1992. La pollution par le cadmium des huitres sauvages de l’Estuaire de la Gironde. Origine. Mécanismes responsables de la fixation du cadmium. Ichtyophysiol. Acta 15: 139–152.Google Scholar
  15. Lerman, A., 1979. Geochemical processes water and sediment environments. Wiley-Interscience Publication, John Wiley sons: 481 pp.Google Scholar
  16. Maneux, E., F. E. Grousset, P. Buat-Ménard, G. Lavaux, P. Rimmelin, Y. Lapaquellerie, 1998. High frequency variability of the wet deposition of anthropogenic heavy metals: the Arcachon Lagoon (SW france). Estuarine, Coastal and Shelf Science. (in press).Google Scholar
  17. Martin, J. M., M. Whitfield, 1983. The significance of the river input of chemical elements to the oceans. In C. S. Wong, E. Boyle, K. W. Bruland, J. D. Burton & E. D. Goldberg (eds) Trace metals in Sea Water. New-York: Plenum: 265–296.Google Scholar
  18. Massio, J. C., 1976. Facteurs d’évolution des matières en suspension minérales et organiques dans les eaux du Lot. Thèse Université P. Sabatier, Toulouse: 135 pp.Google Scholar
  19. Meybeck, M., 1992. Etablissement des flux polluants. Rapport final, Agence de l’Eau Adour-Garonne.Google Scholar
  20. Meybeck, M., A. Pasco A. Ragu, 1994. Etablissement des flux polluants dans les rivières: pourquoi, comment et à quel prix. 4ème Rencontres de l’Agence Régionale pour l’Environnement. Provence–Alpes–Côte d’Azur. Colloque scientifique sur les charges polluantes véhiculées par les fleuves et les rivières en Méditerranée.Collection 1991–1992–1993.Google Scholar
  21. Roux, M., F. Simonet, 1987. Pollutions accidentelles du Lot: Flux polluant. Revue de l’Agence de l’Eau Adour-Garonne. 34: 7–9.Google Scholar
  22. Trefry, J. H., B. J. Presley, 1976. Heavy metal transport from the Mississippi River to the Gulf of Mexico. In H. L. Windom R. A. Duce (eds), Marine Pollutant Transport, Mass: Lexington Books: 39–76.Google Scholar
  23. Valenta, R, M. L. S. Simoes-Gonsalves, M. Sugawara, 1984. Voltametric studies on the speciation of Cd and Zn by amino acids in sea water. In C. J. M. Kramer, J. C. Duinker (eds), Complexation of Trace Metals in Natural Water. Martinus Nijhoff Publishers: 357–365.Google Scholar
  24. Van der Weijden, C. H., M. Middelburg, 1989. Hydrogeochemistry of the river Rhine. Wat. Res. 10: 1247–1266.CrossRefGoogle Scholar
  25. Webb, B. W., J. M. Phillips, D. E. Walling, I. G. Littlewood, C. Watts, G. J. L. Leeks, 1997. Load estimation methodologies for British rivers and their relevance to the LOIS RACS (R) programme. Sci. Total Envir. 194 /195: 379–389.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Gérard Blanc
    • 1
  • Yvon Lapaquellerie
    • 1
  • Noèle Maillet
    • 1
  • Pierre Anschutz
    • 1
  1. 1.Département de Géologie et Océanographie (D.G.O.)Université Bordeaux 1, UMR CNRS 5805 EPOC.Talence cedexFrance

Personalised recommendations