On Applicative Theories

  • Gerhard Jäger
  • Reinhard Kahle
  • Thomas Strahm
Part of the Synthese Library book series (SYLI, volume 280)

Abstract

Systems of explicit mathematics were introduced in Feferman [7, 9] in order to give a logical account to Bishop-style constructive mathematics, and they soon turned out to be very important for the proof-theoretic analysis of subsystems of second order arithmetic and set theory. Moreover, systems of explicit mathematics provide a logical framework for functional programming languages.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aczel, P., ‘Frege Structures and the Notion of Proposition, Truth and Set’, in J. Barwise et al. (eds), The Kleene Symposium, North-Holland, 1980, pp. 31–59.Google Scholar
  2. 2.
    Beeson, M. J., Foundations of Constructive Mathematics: Metamathematical Studies, Springer, Berlin, 1985.CrossRefGoogle Scholar
  3. 3.
    Buss, S. R., Bounded Arithmetic, Bibliopolis, Napoli, 1986.Google Scholar
  4. 4.
    Cantini, A., Logical Frameworks for Truth and Abstraction, North-Holland, Amsterdam, 1996.Google Scholar
  5. 5.
    Cantini, A., ‘On the Computational Content of Weak Applicative Theories with Totality I’, 1996, Preliminary Draft.Google Scholar
  6. 6.
    Cantini, A. and Minari, P., ‘Uniform Inseparability in Explicit Mathematics’, J. Symbolic Logic, 64 (1) (1999), 313–326.CrossRefGoogle Scholar
  7. 7.
    Feferman, S., ‘A Language and Axioms for Explicit Mathematics’, in J. Crossley (ed.), Algebra and Logic, LNM 450, Springer, Berlin, 1975, pp. 87–139.CrossRefGoogle Scholar
  8. 8.
    Feferman, S., ‘A Theory of Variable Types’, Rev. Colombiana Mat., 19 (1975), 95–105.Google Scholar
  9. 9.
    Feferman, S., ‘Constructive Theories of Functions and Classes’, in M. Boffa et al. (eds), Logic Colloquium ‘78, North-Holland, Amsterdam, 1979, pp. 159–224.Google Scholar
  10. 10.
    Feferman, S., ‘Iterated Inductive Fixed-Point Theories: Application to Hancock’s Conjecture’, in G. Metakides (ed.), The Patras Symposion, North-Holland, Amsterdam, 1982, pp. 171–196.CrossRefGoogle Scholar
  11. 11.
    Feferman, S., ‘Hilbert’s Program Relativized: Proof-Theoretical and Foundational Studies’, J. Symbolic Logic, 53 (2) (1988), 364–384.CrossRefGoogle Scholar
  12. 12.
    Feferman, S., ‘Weyl Vindicated: “Das Kontinuum” 70 Years Later’, in Terni e prospettive della logica e della filosofia della scienza contemporanee, CLUEB, Bologna, 1988, pp. 59–93.Google Scholar
  13. 13.
    Feferman, S., ‘Polymorphic Typed Lambda-Calculi in a Type-Free Axiomatic Framework’, in W. Sieg (ed.), Logic and Computation, Contemp. Math. 106, Amer. Math. Soc., Providence, RI, 1990, pp. 101–136.CrossRefGoogle Scholar
  14. 14.
    Feferman, S., ‘Logics for Termination and Correctness of Functional Programs’, in Y. N. Moschovakis (ed.), Logic from Computer Science, MSRI Publications 21, Springer, Berlin, 1991, pp. 95–127.Google Scholar
  15. 15.
    Feferman, S., ‘Logics for Termination and Correctness of Functional programs II: Logics of Strength PRA’, in R. Aczel, H. Simmons, and S. S. Wainer (eds), Proof Theory, Cambridge University Press, Cambridge, 1992, pp. 195–225.Google Scholar
  16. 16.
    Feferman, S., ‘Definedness’, Erkenntnis, 43 (1995), 295–320.CrossRefGoogle Scholar
  17. 17.
    Feferman, S. and Jäger, G., ‘Systems of Explicit Mathematics with Non-Constructive p-Operator. Part I’, Ann. Pure Appl. Logic, 65 (3) (1993), 243–263.CrossRefGoogle Scholar
  18. 18.
    Feferman, S. and Jäger, G., ‘Systems of Explicit Mathematics with Non-Constructive p-Operator. Part II’, Ann. Pure Appl. Logic, 79 (1) (1996).Google Scholar
  19. 19.
    Feferman, S. and Sieg, W., ‘Proof-Theoretic Equivalences Between Classical and Constructive Theories for Analysis’, in W. Buchholz et al. (eds), Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-Theoretical Studies, LNM 897, Springer, Berlin, 1981, pp. 78–142.CrossRefGoogle Scholar
  20. 20.
    Ferreira, F., ‘Polynomial Time Computable Arithmetic’, Contemp. Math., 106 (1990), 137–156.CrossRefGoogle Scholar
  21. 21.
    Glass, T., Standardstrukturen für Systeme Expliziter Mathematik, PhD Thesis, Westfälische Wilhelms-Universität Münster, 1993.Google Scholar
  22. 22.
    Glass, T. and Strahm, T., ‘Systems of Explicit Mathematics with Non-Constructive p-Operator and Join’, Ann. Pure Appl. Logic, 82 (1996), 193–219.CrossRefGoogle Scholar
  23. 23.
    Hayashi, S. and Nakano, H., PX: A Computational Logic, MIT Press, Cambridge, MA, 1988.Google Scholar
  24. 24.
    Hinman, P. G., Recursion-Theoretic Hierarchies, Springer, Berlin, 1978.Google Scholar
  25. 25.
    Jäger, G., ‘A Well-Ordering Proof for Feferman’s Theory To’, Archiv für mathematische Logik und Grundlagenforschung, 23 (1983), 65–77.CrossRefGoogle Scholar
  26. 26.
    Jäger, G., Theories for Admissible Sets: A Unifying Approach to Proof Theory, Bibliopolis, Napoli, 1986.Google Scholar
  27. 27.
    Jäger, G., ‘Induction in the Elementary Theory of Types and Names’, in E. Börger et al. (eds), Computer Science Logic ‘87, LNCS 329, Springer, Berlin, 1988, pp. 118–128.Google Scholar
  28. 28.
    Jäger, G., ‘Type Theory and Explicit Mathematics’, in H.-D. Ebbinghaus et al. (eds), Logic Colloquium ‘87, North-Holland, Amsterdam, 1989, pp. 117–135.Google Scholar
  29. 29.
    Jäger, G., ‘Power Types in Explicit Mathematics’, J. Symbolic Logic, 62 (1997), 1142–1146.CrossRefGoogle Scholar
  30. 30.
    Jäger, G. and Pohlers, W., ‘Eine beweistheoretische Untersuchung von (A -CA) + (BI) und verwandter Systeme’, in Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse, 1982, pp. 1–28.Google Scholar
  31. 31.
    Jäger, G. and Strahm, T., ‘Totality in Applicative Theories’, Ann. Pure Appl. Logic, 74 (2) (1995), 105–120.CrossRefGoogle Scholar
  32. 32.
    Jäger, G. and Strahm, T., ‘Some Theories with Positive Induction of Ordinal Strength cpw0’, J. Symbolic Logic, 61 (3) (1996), 818–842.CrossRefGoogle Scholar
  33. 33.
    Jäger, G. and Strahm, T., ‘The Proof-Theoretic Strength of the Suslin Operator in Applicative Theories’, in preparation.Google Scholar
  34. 34.
    Jansen, D., Ontologische Aspekte expliziter Mathematik, Master’s Thesis, Mathematisches Institut, Universität Bem, 1997.Google Scholar
  35. 35.
    Kahle, R., Einbettung des Beweissystems LAMBDA in eine Theorie von Operationen und Zahlen, Master’s Thesis, Universität München, 1992.Google Scholar
  36. 36.
    Kahle, R., ‘N-Strictness in Applicative Theories’, Archive for Mathematical Logic,to appear.Google Scholar
  37. 37.
    Kahle, R., ‘Frege Structures for Partial Applicative Theories’, J. Logic Computation,to appear.Google Scholar
  38. 38.
    Kahle, R., Universes over Frege Structures, Tech. Rep. IAM-96–010, Institut für Informatik und angewandte Mathematik, Universität Bern, May 1996.Google Scholar
  39. 39.
    Kahle, R., Applicative Theories and Frege Structures, PhD Thesis, Institut für Informatik und angewandte Mathematik, Universität Bem, 1997.Google Scholar
  40. 40.
    Marzetta, M., Predicative Theories of Types and Names, PhD Thesis, Institut für Informatik und angewandte Mathematik, Universität Bern, 1993.Google Scholar
  41. 41.
    Marzetta, M. and Strahm, T., ‘The p Quantification Operator in Explicit Mathematics with Universes and Iterated Fixed Point Theories with Ordinals’, Arch. Math. Logic, 37 (1998), 391–413.CrossRefGoogle Scholar
  42. 42.
    Schlüter, A., ‘A Theory of Rules for Enumerated Classes of Functions’, Arch. Math. Logic, 34 (1995), 47–63.Google Scholar
  43. 43.
    Strahm, T., Theories with Self-Application of Strength PRA, Master’s Thesis, Institut für Informatik und angewandte Mathematik, Universität Bern, 1992.Google Scholar
  44. 44.
    Strahm, T., On the Proof Theory of Applicative Theories, PhD Thesis, Institut für Informatik und angewandte Mathematik, Universität Bern, 1996.Google Scholar
  45. 45.
    Strahm, T., ‘Partial Applicative theories and Explicit Substitutions’, J. Logic Comput., 6 (1) (1996).Google Scholar
  46. 46.
    Strahm, T., ‘Polynomial Time Operations in Explicit Mathematics’, J. Symbolic Logic, 62 (1997), 575–594.CrossRefGoogle Scholar
  47. 47.
    Talcott, C., ‘A Theory for Program and Data Type Specification’, Theoret. Comput. Sci., 104 (1992), 129–159.CrossRefGoogle Scholar
  48. 48.
    Troelstra, A. and van Dalen, D., Constructivism in Mathematics, Vol. I, North-Holland, Amsterdam, 1988.Google Scholar
  49. 49.
    Troelstra, A. and van Dalen, D., Constructivism in Mathematics, Vol. II, North-Holland, Amsterdam, 1988.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Gerhard Jäger
    • 1
  • Reinhard Kahle
    • 1
  • Thomas Strahm
    • 1
  1. 1.Institut für Informatik und angewandte MathematikUniversität BernBernSwitzerland

Personalised recommendations