Challenges in Modeling Scalars in Turbulence and LES

Anisotropy, dynamic models, and scale separation
  • C. Meneveau
  • H. S. Kang
  • F. Charlette
  • J. Averill
  • O. Knio
  • D. Veynante
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 70)


This paper discusses three interrelated aspects of modeling scalar transport, mixing and combustion, in the context of large-eddy simulations (LES). In terms of passive scalar modeling, we find from heated wake measurements that whereas the kinetic energy dissipation tensor tends towards isotropy at small scales, in the presence of a mean scalar gradient the SGS scalar variance dissipation remains anisotropic independent of filter scale. The eddy-diffusion model predicts isotropic behavior, whereas the nonlinear model reproduces the correct trends, but overestimates the level of scalar dissipation anisotropy. The results provide some support for mixed models. Applications of dynamic models are also discussed. Initial tests on non-buoyant jet flows show that the constant-coefficient Smagorinsky model generates an entirely laminar jet, whereas the Lagrangian dynamic model yields very good results without the need to tune the model coefficient. In the context of applying the dynamic model to premixed combustion, or other physical processes with large scale-separations, we show that the dynamic determination of unknown scaling exponents is a more promising approach than dynamic evaluation of model coefficients.


LES passive scalar anisotropy modeling scale separation dynamic model premixed combustion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bardina, J., Ferziger, J. H. and Reynolds, W. C. (1980) “Improved sub-grid scale models for large eddy simulation,” AIAA Pap. 25, 80–1357.Google Scholar
  2. Baum, H., McGrattan, K. and Rehm, R. (1996) “Large eddy simulations of smoke movement in three dimensions,” Proceedings of the Thirteenth Meeting of the UJNR Panel on Fire Research and Safety edited by K. Beall, (NIST, Gaithersburg, MD), 249–256.Google Scholar
  3. Borue, V. and Orszag, S. (1998) “Local energy flux and subgrid-scalestatistics in three-dimensional turbulence,” J. Fluid Mech. 366 1–31.MathSciNetADSMATHCrossRefGoogle Scholar
  4. Cerutti, S. and Meneveau, C. (2000) “Statistics of filtered velocity in grid and wake turbulence,” Phys. Fluids 12 1143–1165.MathSciNetADSMATHCrossRefGoogle Scholar
  5. Cerutti, S., Meneveau, C. and Knio O.M. (2000) “Spectral and hyper eddy viscosity in high-Reynolds-number turbulence,” J. Fluid Mech 421, 307–338.MathSciNetADSMATHCrossRefGoogle Scholar
  6. Charlette, F., Meneveau, C. and Veynante, D. (2001a) “Flame-wrinkling model and application in thickened-flame LES of premixed turbulent combustion,” Comb. Flame (in preparation for submission).Google Scholar
  7. Charlette, F., Meneveau, C. and Veynante, D. (2001b) “A power-law dynamic procedure for LES of turbulent premixed combustion,” Comb. Flame (in preparation for submission).Google Scholar
  8. Clark, R. G., Ferziger, J. H. and Reynolds, W. C. (1979) “Evaluation of subgrid models using an accurately simulated turbulent flow,” J. Fluid Mech. 91, 1–16.ADSMATHCrossRefGoogle Scholar
  9. Colin, O, Ducros, F., Veynante, D. and Poinsot T. (2000) “A thickened flame model for large eddy simulations of turbulent premixed combustion,” Phys. Fluids 12, 1843–1863.ADSCrossRefGoogle Scholar
  10. Germano, M., Piomelli, U. Moin, P. and Cabot, W. (1991) “A dynamic subgrid-scale eddy viscosity model,” Phys. Fluids A 3, 1760–1765.ADSMATHCrossRefGoogle Scholar
  11. Hussein, H. J., Capp, S. and George, W. K. (1994) “Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet,” J. Fluid Mech. 258, 31–75.ADSCrossRefGoogle Scholar
  12. Im, H. G., Lund, T. S. and Ferziger J. H. (1997) “Large eddy simulation of turbulent front propagation with dynamic subgrid models,” Phys. Fluids 9, 3826–3833.MathSciNetADSMATHCrossRefGoogle Scholar
  13. Kang, H. S. and Meneveau, C. (2001) “Passive scalar anisotropy in a heated turbulent wake: new observations and implications for large-eddy simulations,” J. Fluid Mech. 442, 161–170.ADSMATHCrossRefGoogle Scholar
  14. Kiya, M. and Matsumura, M. (1988) “Incoherent turbulent structure in the near wake of a normal plate,” J. Fluid Mech. 190 343–356.ADSCrossRefGoogle Scholar
  15. Leonard, A. (1974) “Energy cascade in large-eddy simulations of turbulent fluid flows,” Adv. Geophys 18 237–248.ADSCrossRefGoogle Scholar
  16. Leonard, A. (1997) “Largeeddy simulation of chaotic convection and beyond,” Am. Inst. Aeronaut. Astronaut. Pap. 97–0204: 1–8.Google Scholar
  17. Liu, S., Katz, J. and Meneveau, C. (1999) “Evolution and modelling of subgrid scales during rapid straining of turbulence,” J. Fluid Mech. 387, 281–320.MathSciNetADSMATHCrossRefGoogle Scholar
  18. Liu, S., Meneveau, C. and Katz, J. (1994) “On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet,” J. Fluid Mech. 275, 83–119.ADSCrossRefGoogle Scholar
  19. Matsumura, M. and Antonia, R. A. (1993) “Momentum and heat transport in the turbulent intermediate wake of a circular cylinder,” J. Fluid Mech. 250, 651–668.ADSCrossRefGoogle Scholar
  20. McGrattan, K., Baum, H. and Rehm, R. (1998) “Large Eddy Simulations of Smoke Movement,” Fire Science Journal 30, 161–178.Google Scholar
  21. Mell, W., Johnson, A., McGrattan, K. and Baum, H. (1995) “Large eddy simulations of buoyant plumes,” Proceedings, Eastern States Section of Combustion Institute, Fall Technical Meeting HTD 304, 187–190.Google Scholar
  22. Mell, W., McGrattan, K. and Baum, H. (1995) “Large eddy simulations of fire driven flows,” National Heat Transfer Conference HTD 304, 73–77.Google Scholar
  23. Meneveau, C. and Poinsot, T. (1991) “Stretching and quenching of flamelets in premixed turbulent combustion,” Comb. Flame 86, 311–332.CrossRefGoogle Scholar
  24. Meneveau, C. and Katz, J. (2000) “Scale-invariance and turbulence models for large-eddy simulation,“ Annu. Rev. Fluid Mech. 32 1–32.Google Scholar
  25. Meneveau, C., Lund, T. and Cabot, W. (1996) “A Lagrangian dynamic subgrid-scale model of turbulence,” J. Fluid Mech. 319 353–386.ADSMATHCrossRefGoogle Scholar
  26. O’Neil, J. and Meneveau, C. (1997) “Subgrid-scale stresses and their modelling in a turbulent plane wake,” J. Fluid Mech. 349 253–293.MathSciNetADSCrossRefGoogle Scholar
  27. Peters (2000) ”Turbulent combustion, Cambridge University Press, CambridgeGoogle Scholar
  28. Piomelli, U. and Zang, T. (1991) “Large-eddy-simulation of transitional channel flow,” Comp. Phys. Comm. 65–224.Google Scholar
  29. Pope, S. B. (2000) “Turbulent flow,” Cambridge University Press, Cambridge.Google Scholar
  30. Smagorinsky, J. (1963) “General circulation experiments with the primitive equations. i. The basic experiment,” Mon. Weather. Rev. 91–99.Google Scholar
  31. Stoessel, A., (1995) “An efficient tool for the study of 3D turbulent combustion phenomena on MPP computers,” Proc. of the HPCN 95 Conference, Milan ( Italy ), Springer-Verlag, 306–311.Google Scholar
  32. Warhaft, Z. (2000) “Passive scalars in turbulent flows,” Annu. Rev. Fluid Mech. 32, 203–240.MathSciNetADSCrossRefGoogle Scholar
  33. Wygnanski, I. and Fiedler, H. (1969) “Some measurements in the self-preserving jet,” J. Fluid Mech. 38, 577–612.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • C. Meneveau
    • 1
    • 2
  • H. S. Kang
    • 1
  • F. Charlette
    • 1
    • 3
  • J. Averill
    • 1
    • 4
  • O. Knio
    • 1
    • 2
  • D. Veynante
    • 5
  1. 1.Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreUSA
  2. 2.Center for Environmental & Applied Fluid MechanicsUSA
  3. 3.Institute Français du PétroleRueil-MalmaisonFrance
  4. 4.National Institute of Standards & TechnologyGaithersburgUSA
  5. 5.Laboratoire EM2CEcole CentraleParisFrance

Personalised recommendations