Mechanisms of salinity adaptations in marine molluscs

  • V. J. Berger
  • A. D. Kharazova


A review on salinity adaptation of marine molluscs based on mainly Russian scientific literature is presented. The existence of two relatively independent systems of adaptation to extreme (resistance level) and moderate (tolerance level) changes of environmental salinity was shown. The resistance of molluscs is based mainly on an impeded water-salt exchange with the external medium due to mantle cavity hermetization. The tolerance of molluscs is determined by cellular mechanisms of adaptation. Reversible changes of protein and RNA synthesis, alteration of the pattern of multiple molecular forms of different enzymes, and the regulation of ionic content and cell volume were shown to be of importance for the above mentioned mechanisms. The efficiency of resistance and tolerance adaptations to salinity changes may vary in different species and in different colour phenotypes of the same species (intrapopulational polymorphism). Parasites (trematodes) may suppress the resistance of the mollusc-host to extreme salinity changes without effecting the host’s capacity for adaptive changes in salinity tolerance.

Key words

adaptation salinity mollusks resistance tolerance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aliakrinskaya, I. 0., 1972. Biochemical adaptations of aquatic molluscs to inhabiting air. Zool. Zhurn. 51: 1630–1636 [in Russian].Google Scholar
  2. Beliaev, G. M., 1951. Osmotic pressure of cavity fluid of aquatic invertebrates in waters of different salinity. Trudy Vsesouz. Gidrobiol. ob-va. 3: 92–139 [in Russian].Google Scholar
  3. Beliaev, G. M., 1957. Physiological peculiarities of representatives of the same species in water of different salinity. Trudy Vsesoyuzn. Gidrobiol. oh-va. 8: 321–353 [in Russian].Google Scholar
  4. Berger, V. J., 1976. On adaptations of some littoral White Sea molluscs to salinity changes. In Khlebovich, V. V. and V. J. Berger (eds), Solenostnye adaptatsii vodnykh organizmov. Zooligical Institute, Leningrad: 69–111 [in Russian].Google Scholar
  5. Berger, V. J., 1986. Adaptation of marine molluscs to environmental salinity changes. Nauka, Leningrad: 214 pp [in Russian].Google Scholar
  6. Berger, V. J., 1989. On the adaptation of molluscs to increased salinity. Biologiia moria. 2: 30–35 [in Russian].Google Scholar
  7. Berger, V. J. and A. D. Kharazova, 1971. Investigation of substantial changes in protein synthesis during adaptation to lowered salinity of the environment in some White Sea snails. Tsitologia 13: 1299 1303 [in Russian].Google Scholar
  8. Berger, V. J. and A. D. Kharazova, 1977. The influence of low salinity on RNA passage from the nucleus to the cytoplasm of ctenidial cells of the snail Littorina littorea. Tsitologia 19: 233–35 [in Russian].Google Scholar
  9. Berger, V. J., B. N. Letunov, G. V. Vshevtsov and O. L. Saranchova, 1985. Morpho-functional and ecological aspects of byssus formation in mussels Mytilus edulis L. In Berger, V. J. and L. N. Seravin (eds), Ekologija obrastanija v Belom more. Zoological Institute, Leningrad: 67–76 [in Russian].Google Scholar
  10. Berger, V. J. and V. V. Lukanin, 1972. Inhibition of the capacity to salinity acclimation in Aurelia aurita (L.) larvae by actinomycin D. Dokl. Akad. nauk SSSR. 202: 205–207 [in Russian].Google Scholar
  11. Berger, V. J., V. V. Lukanin and V. V.Khlebovich, 1970. Effect of actinomycin D on the capacity to salinity acclimation in larvaeGoogle Scholar
  12. of the jellyfish Aurelia aurita and the mollusc Epheria vincta. Zhurn. Evolyuts. Biochim. Fiziol. 6: 636–638 [in Russian].Google Scholar
  13. Berger, V. J., A. D. Naumov and A. I. Babkov, 1995. Quantity and diversity dependence of marine benthos on environmental salinity. Biologiia moria. 21: 45–50 [in Russian].Google Scholar
  14. Berger, V. J., A. N. Pachomov and A. G. Mukhlenov, 1975. Investigation of esterase and lactatedehydrogenase isozymes spectra during adaptation of molluscs Littorina littorea to environmental salinity changes. Zhurn. Obsch. Biologii. 36: 579–584 [in Russian].Google Scholar
  15. Berger, V. J. and S. O. Sergievskii, 1986. Differences in adaptive reactions on salinity changes of individuals of Littorina obtusata with different shell colour. Biologia moria. 1: 36–41 [in Russian].Google Scholar
  16. Berger, V. J. and S. O. Sergievskii, 1990. Evolution of salinity adaptations in marine molluscs. Zhurn. Evolyuts. Biochim. Fiziol. 26: 462–468 [in Russian].Google Scholar
  17. Bishop, S. H., D. E. Greenwalt, M. A. Kapper, K. T. Paynter and L. L. Ellis, 1994. Metabolic regulation of proline, glycine and alanine accumulation as intracellular osmolytes in ribbed mussel gill tissue. J. exp. Zool. 268: 151–161.Google Scholar
  18. Black, R. E. and L. Bloom, 1984. Heat-shock proteins in Aurelia ( Cnidaria, Scyphozoa). J. exp. Zool. 230: 303–307.Google Scholar
  19. Davenport, J., 1979. Is Mytilus edulis a short term osmoregulator? Comp. Biochem. Physiol. 64: 91–95.Google Scholar
  20. Davenport, J., 1981. The opening response of mussels (Mytilus edulis L.) exposed to rising sea-water concentrations. J. mar. biol. Ass. UK 61: 667–668.Google Scholar
  21. Ferraris, J. D. and A. Garcia-Perez, 1996. Osmoregulatory gene expression and implications for evolutionary studies: Strategies in identification of the osmotic response element (ORE). In Ferraris, J. D. and R. Stephen (eds), Molecular Zoology: Advances, Strategies and Protocols. John Wiley and Sons, New York: 313326.Google Scholar
  22. Florkin, M. and E. Schoffeniels, 1969. Molecular Approaches to Ecology. John Wiley and Sons, New York, 203 pp.Google Scholar
  23. Freel, R. W., 1978. Patterns of water solute regulation in the muscle fibres of osmoconforming marine decapod crustaceans. J. exp. Biol. 72: 107–126.Google Scholar
  24. Freeman, R. F and F. H. Rigler, 1957. The responses of Scrobicularia plana (Da Costa) to osmotic pressure changes. J. mar. biol. Ass. UK 36: 553–567.Google Scholar
  25. Fretter, V. and A. Graham, 1962. British prosobranch molluscs. Proc. r. Soc., London. 144: 3–755.Google Scholar
  26. Gilles, R., 1972. Osmoregulations of three molluscs: Acanthochitona discrepans (Brown), Glycymeris glycymeris (L.) and Mytilus edulis (L.). Biol. Bull. 142: 25–35.Google Scholar
  27. Gilles, R., 1979. Mechanism of osmoregulation in animals. Wiley Interscience, New York, 667 pp.Google Scholar
  28. Ginetsinskiy, A. G., 1963. Physiological mechanisms of water-salt balance. Nauka, Moscow-Leningrad, 276 pp [in Russian].Google Scholar
  29. Golikov, A. N. and O. G. Kusakin, 1978. Shell gastropod molluscs from the intertidal zone of USSR seas. Nauka, Leningrad, 256 pp [in Russian].Google Scholar
  30. Gurina, V. I., 1975. Investigation of RNA and protein synthesis in epithelial tissues of molluscs during adaptation to environmental salinity changes. Tsitologia 17: 298–303 [in Russian].Google Scholar
  31. Hedgpeth, J. W., 1967. Ecological aspects of Laguna Madre, hyper-saline estuary. In Lauff, G. H. (ed.), Estuaries. A.A.A.S., Washington: 408–419.Google Scholar
  32. Jensen, K. T., G. Latama and K. N. Mouritsen, 1996. The effect of larval trematode on the survival rates of two species of mud snails (Hydrobiidae) experimentally exposed to dessication, freezing and anoxia. Helgolander wiss. Meeresunters. 50: 327–335.Google Scholar
  33. Kharazova, A. D., 1987. The role of plastic metabolism in adaptations of hydrobionts to abiotic factors of the environment. Trudy zoologicheskogo instituta AN SSSR. 160: 59–84 [in Russian].Google Scholar
  34. Kharazova, A. D., 1994. Protein and RNA metabolism in the tissues of marine molluscs at changes of environmental salinity. Izvestia Akad. Nauk. 4: 561–565 [in Russian].Google Scholar
  35. Kharazova, A. D. and V. J. Berger, 1974. Changes of RNA synthesis in tissues of the mollusc Littorina littorea ( L.) at decreasing water salinity. Tsitologia 16: 241–243 [in Russian].Google Scholar
  36. Kharazova, A. D., V. J. Berger, V. I. Fateeva, L. M. Yaroslavtseva and R. V. Yaroslavtsev, 1981. Influence of salinity on the dynamics of protein synthesis in isolated gills of Crenomytilus grayana. Biologiia moria 6: 55–60 [in Russian].Google Scholar
  37. Kharazova, A. D., V. J. Berger, V. I. Fateeva, L. M. Yaroslavtseva and P. V. Yaroslavtsev, 1983. On the correlation of organismic and cellular reactions at adaptation of mussels to environmental salinity changes. Dokl. AN SSSR. 269: 245–247 [in Russian].Google Scholar
  38. Kharazova, A. D., N. V. Nechaeva and V. I. Fateeva, 1989. Circahouralian rhythms of protein synthesis in the tissues of some invertebrates. Tsitologia 31: 601–614 [in Russian].Google Scholar
  39. Kharazova, A. D. and V. V. Rostova, 1976. Investigation of protein and RNA synthesis changes in tissues of White Sea mollusc Coryphella rufibranchialis at lowered salinity. In Khlebovich, V. V. and V. J. Berger (eds), Solenostnye adaptatsii vodnykh organizmov. Zoological Institute, Leningrad: 142–155 [in Russian].Google Scholar
  40. Khlebovich, V. V., 1962. Pecularities of aquatic fauna composition in dependence of environmental salinity. Zhurn. Obsch. Biologii. 23: 90–97 [in Russian].Google Scholar
  41. Khlebovich, V. V., 1974. Critical salinity of biological processes. Nauka, Leningrad, 230 pp [in Russian].Google Scholar
  42. Khlebovich, V. V. and A. P. Kondratenkov, 1973. Stepwise acclimation - a method for estimating the potential euryhalinity of the gastropod Hydrobia ulvae. Mar. Biol. 18: 6–8.Google Scholar
  43. Klekowski, R. Z., 1963. The influence of low salinity and dessication on the survival, osmoregulation and water balance of Littorina littorea. Polsk. arch. hydrobiol. 11: 241–250.Google Scholar
  44. Korolkova, E. D. and A. D. Kharazova, 1994. EM investigation of mussel gill epithelium at a lowering of salinity. Tsitologia 36: 69–75 [in Russian].Google Scholar
  45. Kreps, E. M., 1929. Investigations of gas exchange of Balanus crenatus at different salt concentrations of the environment. Trudy Murman. Biol. Stantsii. 3: 1–32 [in Russian].Google Scholar
  46. Kroeger, H., 1967. Hormones, ion balance and gene activity in dipteran chromosomes. Mem. Soc. Endocrinol. 15: 55–56.Google Scholar
  47. Krogh, A., 1939. Osmotic regulation in aquatic animals. University Press, Cambridge, 242 pp.Google Scholar
  48. Kuzmina, O. Y., 1982. Role of intracellular inorganic ions in the adaptation of some poikilosmotic animals to environmental salinity changes. Ph.D. dissertation. Zoological Institute, Leningrad, 172 pp [in Russian].Google Scholar
  49. Lavrova, E. A. and Y. V. Natochin, 1981. Inhibition of chloride permeability and sodium transport in frog skin by merkuzal and etakrinic acid. Biofizika 26: 651–656 [in Russian].Google Scholar
  50. Lezzi, M., 1970. Differential gene activation in isolated chromosomes. Int. Revue Cytol. 29: 127–168.Google Scholar
  51. Lukanin, V. V., 1976. Study of adaptive reactions of White Sea scyphomedusae Aurelia aurita (L.) on environmental salinity changes. In Khlebovich, V. V. and V. J. Berger (eds), Solenostnye adaptatsii vodnykh organizmov. Zoological Institute, Leningrad: 28–58 [in Russian].Google Scholar
  52. Lukanin, V. V. and V. V. Khlebovich, 1979. Effect of inhibitors of protein synthesis on metamorphosis and adaptive capacity of scyphomedusae Aurelia aurita ( L.) during water freshening. Ontogenez. 10: 80–83 [in Russian].Google Scholar
  53. Lvova, T. G. and E. E. Kulakovsky, 1979. Investigation on protein and RNA synthesis in the tissues of the polychaete Micronephthys minuta at changes of environmental salinity. Tsitologia 21: 1356 1360.Google Scholar
  54. Marek, M. and H. Kroeger, 1974. Influence of Na/Mg on the pattern of esterases in explanted Galleria melonella midgut. Comp. Biochem. Physiol. 47B: 503–506.Google Scholar
  55. Marek, M. and H. Kroeger, 1976. Influence on Na, K, Mg and cooling on proteosynthesis in hemocytes of Galleria melonella. Comp. Biochem. Physiol. 53B: 45–47.Google Scholar
  56. Natochin, Y. V., 1966. Reaction of mussels on separate changes of osmotic concentration and salinity in the environment. Zhurn. Obsch. Biologii. 27: 473–479 [in Russian].Google Scholar
  57. Natochin, Y. V., 1976. The kidney: regulation of ionic balance. Nauka, Leningrad, 286 pp [in Russian].Google Scholar
  58. Natochin, Y. V. and V. J. Berger, 1979. Ionic content of molluscs cells -evolutionary and ecological aspects. Zhurn. Evolyuts. Biokhim. Fiziol. 15: 295–302 [in Russian].Google Scholar
  59. Natochin, Y. V., V. J. Berger, V. V. Khlebovich, E. A. Lavrova and O. Y. Mikhailova, 1979. The participation of electrolytes in adaptation mechanisms of intertidal mollusc cells to altered salinity. Comp. Biochem. Physiol. 63A.: 115–119.Google Scholar
  60. Oliver, L. T. and M. Brand, 1953. The influence of lack of oxygen on Schistosoma mansoni cercariae and infected Austrolorbus glabratus. Exp. Parasitol. 12: 339–366.Google Scholar
  61. Pierce, S. K., 1982. Invertebrate cell volume control mechanism: a coordinated use of intracellular amino acid and inorganic ions as osmotic solute. Biol. Bull. 169: 405–419.Google Scholar
  62. Pierce, S. K, 1994. Osmolyte permeability in molluscan red cells is regulated by Cat+ and membrane protein phosphorylation: the present perspective. J. exp. Zool. 268: 166–170.Google Scholar
  63. Potts, W. T. W., 1958. The inorganic and amino acid composition of some lamellibranch muscles. J. exp. Biol. 53: 749–764.Google Scholar
  64. Potts, W. T. W. and G. Parry, 1964. Osmotic and ionic regulations in animals. Pergamon Press, Oxford, 412 pp.Google Scholar
  65. Savvateev, V. B., 1952. On the physiology of adaptations in Balanus to salinity oscillations. Zool. Zhurn. 31: 801–805 [in Russian].Google Scholar
  66. Schlieper, C., 1960. Genotypische and phaenotypische Temperatur and Salzgehalts Adaptationen bei merinen Bodenvertebraten der Nord and Ostsee. Kieler Meeresforsch. 16: 180–185.Google Scholar
  67. Sergievskii, S. 0., 1983. Shell-colour polymorphism: paramethric systems. In Mollyuski, sistematika, ekologiia i zakonomernosti raspredeleniia. Leningrad: 52–54 [in Russian].Google Scholar
  68. Sergievskii, S. O. and V. J. Berger, 1983. Population-physiological analysis of shell-colour polymorphism of Littorina obtusata (Gastropoda: Prosobranchia). In Likharev, 1. M. (ed.), Mollyuski, sistematika, ekologiia i zakonomernosti raspredeleniia. Nauka, Leningrad: 55–56 [in Russian].Google Scholar
  69. Sergievskii, S. O. and V. J. Berger, 1984. Physiological differences of principal shell-colour phenotypes of the gastropod mollusc Littorina obtusata. Biol. moria. 2: 36–44 [in Russian].Google Scholar
  70. Todd, M. E., 1964. Osmotic balance in Littorina littorea, L. litoralis and L. saxatilis (Litorinidae). Physiol. Zool. 37: 33–44.Google Scholar
  71. Vasilieva, V. F., A. G. Ginetsinskiy, M. G. Zaks and M. M. Sokolova, 1960. Two types of adaptation of poikilosmotic marine animals to hypodynamic environment. In Voprosy tsitologii i obscheiy fiziologii. Publishing house of USSR Academy of Sciences, Moscow-Leningrad: 50–60 [in Russian].Google Scholar
  72. Vernberg, W. B. and F J. Vernberg, 1963. Influence of parasitism on thermal resistance of the mud-flat snail, Nassarius obsoleta. Soc. exp. Parasitol. 14: 330–332.Google Scholar
  73. Zhirmunskiy, A. V., 1962. The reaction of ciliary epithelia cells of mussels and sea anemones to reduced salinity. Zhurn. obsch. biologii. 23: 119–126 [in Russian].Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • V. J. Berger
    • 1
  • A. D. Kharazova
    • 2
  1. 1.Zoological Institute of the Russian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations