Advertisement

Interspecific crossing barriers in Lycopersicon and their relationship to self-incompatibility

  • Martha A. Mutschler
  • Barbara E. Liedl
Part of the Advances in Cellular and Molecular Biology of Plants book series (CMBP, volume 2)

Abstract

Fertilization in plants is the culmination of a complex set of processes beginning with the initiation of pollen germination, involving the development of the pollen tube and its interactions with the female sporophyte or gametophyte, and resulting in the production of viable seed. Several mechanisms limit successful fertilization within and between species. The intraspecific mechanisms encourage outcrossing within species, and the interspecific mechanisms affect speciation and limit the exchange of genes between species.

Keywords

Pollen Tube Pollen Tube Growth Interspecific Cross Distorted Segregation Hybrid Breakdown 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, F., Slinkkard, A.E. and Scoles, G.J. (1988) Investigations into the barrier(s) to interspecific hybridization between Cicer arietinum L. and eight other annual Cicer species. Plant Breeding 100: 193–198.CrossRefGoogle Scholar
  2. Andersen, R. (1964) Evidence of plasmon differentiation in Lycopersicon. Rpt. Tom. Genet. Coop. 14: 4–6.Google Scholar
  3. Anderson, E. and de Winton, D. (1931) The genetic analysis of an unusal relationship between self-sterility and self-fertility in Nicotiana. Ann. Mo. Bot. Gard. 18: 97–116.CrossRefGoogle Scholar
  4. Ascher, P.D. (1976) Self-incompatibility systems in floriculture crops. Acta Hortic. 63: 205–215.Google Scholar
  5. Ascher, P.D. (1986) Incompatibility and incongruity: Two mechanisms preventing gene transfer between taxa. In: D.L. Mulcahy, G.B. Mulcahy and E. Ottaviano (eds.), Biotechnology and Ecology of Pollen, pp. 251–256. Springer-Verlag, New York.CrossRefGoogle Scholar
  6. Ascher, P.D. and Drewlow, L.W. (1971) Unilateral interspecific incompatibility in Lilium. Yearbook of the North American Lily Society 24: 70–74.Google Scholar
  7. Ascher, P.D. and Peloquin, S.J. (1968) Pollen tube growth and incompatibility following intra-and inter-specific pollinations in Lilium longiflorum. Amer. J. Bot. 55: 1230–1234.CrossRefGoogle Scholar
  8. Atherton, J.G. and Rudich, J. (eds.) (1986) The Tomato Crop: A Scientific Basis for Improvement. Chapman and Hall Ltd, London.Google Scholar
  9. Ayuso, M.C., Baguena, M., Cuartero, J. and Nuez, E. (1987) Possibilities of using the compatible form L. peruvianum PE-23 as a genetic bridge in tomato breeding. Rpt. Tom. Genet. Coop. 37: 36–37.Google Scholar
  10. Bateman, A.J. (1943) Specific differences in Petunia. II. Pollen growth. J. Genet. 45: 236–242.Google Scholar
  11. Batra, V., Prakash, S. and Shivanna, K.R. (1990) Intergeneric hybridization between Diplotaxis siifolia, a wild species and crop brassicas. Theor. Appl. Genet. 80: 537–541.CrossRefGoogle Scholar
  12. Bernatzky, R. and Tanksley, S.D. (1986a) Majority of random cDNA clones correspond to single loci in the tomato genome. Mol. Gen. Genet. 203: 8–14.CrossRefGoogle Scholar
  13. Bernatzky, R. and Tanksley, S.D. (1986b) Toward a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics 112: 887–898.PubMedGoogle Scholar
  14. Boyle, T.H. and Stimart, D.P. (1986) Self-incompatibility and interspecific incompatibility: relationships in intra-and interspecific crosses of Zinnia elegans Jacq. and Z. angustifolia HBK (Compositae). Theor. Appl. Genet. 73: 305–315.CrossRefGoogle Scholar
  15. Brewbaker, J.L. and Majumder, S.K. (1961) Cultural studies of the pollen population effect and the self-incompatibility inhibition. Am. J. Bot. 48: 457–464.CrossRefGoogle Scholar
  16. Briggs, B.G. (1963) Incompatibility among species of Darwinia. Genetics Today 1: 211.Google Scholar
  17. Buchholz, J.T., Williams, L.F. and Blakeslee, A.F. (1935) Pollen-tube growth of ten species of Datura in interspecific pollinations. Proc. Natl. Acad. Sci. U.S.A. 2: 651–656.CrossRefGoogle Scholar
  18. Burson, B.L. (1987) Pollen germination, pollen tube growth and fertilization following self and interspecific pollination of Paspalum species. Euphytica 36: 641–650.CrossRefGoogle Scholar
  19. Chetelat, R.T. and DeVerna, J.W. (1991) Expression of unilateral incompatibility in pollen of Lycopersicon pennellii is determined by major loci on chromosomes 1, 6 and 10. Theor. Appl. Genet. 82: 704–712.Google Scholar
  20. Chmielewski, T. (1962) Cytogenetical and taxonomical studies on a new tomato form. Part I. Genet. Polonica 3: 253–264.Google Scholar
  21. Chmielewski, T. (1966) An exception to the unidirectional crossability pattern in the genus Lycopersicon. Genet. Polonica 7: 31–39.Google Scholar
  22. Chmielewski, T. (1968) Cytogenetical and taxonomical studies on a new tomato form. Part II. Genet. Polonica 9: 97–124.Google Scholar
  23. Cooper, D.C. and Brink, R.A. (1945) Seed collapse following matings between diploid and tetraploid races of Lycopersicon pimpinellifolium. Genetics 30: 376–399.PubMedGoogle Scholar
  24. Cope, F.W. (1962) The mechanism of pollen incompatibility in Theobroma cacao L. Heredity 17: 157–195.CrossRefGoogle Scholar
  25. DePamphilis, C.W. and Wyatt, R. (1989) Hybridization and introgression in buckeyes (Aesculus: Hippocastanaceae): a review of the evidence and a hypothesis to explain long-distance gene flow. Syst. Bot. 14: 593–611.CrossRefGoogle Scholar
  26. Dionne, L.A. (1961) Mechanisms of interspecific incompatibility in tuber-bearing Solanum species. Am. Pot. J. 38: 73–77.CrossRefGoogle Scholar
  27. Franklin-Tong, V.E. and Franklin, F.C.H. (1992) Gametophytic self-incompatibility in Papaver rhoeas L. Sex. Plant. Reprod. 5: 1–7.CrossRefGoogle Scholar
  28. Fritz, N.K. and Hanneman, R.E., Jr. (1989) Interspecific incompatibility due to stylar barriers in tuber-bearing and closely related non-tuber-bearing Solanums. Sex. Plant. Reprod. 2: 184–192.Google Scholar
  29. Gadish, I. and Zamir, D. (1987) Differential zygotic abortion in an interspecific Lycopersicon cross. Genome 29: 156–159.CrossRefGoogle Scholar
  30. Garde, N.M. (1959) Mechanisms of species isolation in tuberous Solanum. Agronomia Lusitana 21: 19–42.Google Scholar
  31. Gepts, P. and Bliss, F.A. (1985) F1 hybrid weakness in the common bean. J. Hered. 76: 447–450.Google Scholar
  32. Goffreda, J.C., Steffens, J.C. and Mutschler, M.A. (1990) Association of epicuticular sugars with aphid resistance in hybrids with wild tomato. J. Amer. Soc. Hort. Sci. 115: 161–165.Google Scholar
  33. Greenleaf, W.H. (1986) Pepper breeding. In: M.J. Bassett (ed.), Breeding Vegetable Crops, pp. 69–134. AVI Publishing Co., Inc., Westport, CT.Google Scholar
  34. Grun, P. (1970) Cytoplasmic sterilities that separate the cultivated potato from its putative diploid ancestors. Evolution 24: 750–758.CrossRefGoogle Scholar
  35. Grun, P. and Radlow, A. (1961) Evolution of barriers to crossing of self-incompatible with self-compatible species of Solanum. Heredity 16: 137–143.CrossRefGoogle Scholar
  36. Hadley, H.H. and Openshaw, S.J. (1980) Interspecific and intergeneric hybridization. In: W.R. Fehr and H.H. Hadley (eds.), Hybridization of Crop Plants, pp. 133–159. American Society of Agronomy and Crop Science Society of America, Madison, WI.Google Scholar
  37. Haghighi, K.R. and Ascher, P.D. (1988) Fertile, intermediate hybrids between Phaseolus vulgaris and P. acutifolius from congruity backcrossing. Sex. Plant Reprod. 1: 51–58.Google Scholar
  38. Hardon, J.J. (1967) Unilateral incompatibility between Solanum pennellii and Lycopersicon esculentum. Genetics 57: 795–808.PubMedGoogle Scholar
  39. Harrison, B.J. and Darby, L.A. (1955) Unilateral hybridization. Nature 176: 982.CrossRefGoogle Scholar
  40. Hermsen, J.G.T. (1979) Factors controlling interspecific crossability and their bearing on the strategy for breaking barriers to intercrossing of tuber-bearing Solanum species. In: A.C. Zeven and A.M. van Harten (eds.), Broadening the Genetic Base of Crops: Proceedings of the Conference, pp. 311–318. Pudoc, Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands.Google Scholar
  41. Hermsen, J.G.T. and Ramanna, M.S. (1976) Barriers to hybridization of Solanum bulbocastanum Dun. and S. verrucosum Schlechtd. and structural hybridity in their F1 plants. Euphytica 25: 1–10.CrossRefGoogle Scholar
  42. Hermsen, J.G.T. and Sawicka, E. (1979) Incompatibility and incongruity in tuber-bearing Solanum species. In: J.G. Hawkes, R.N. Lester and A.D. Skelding (eds.) Biology and Taxonomy of the Solanaceae, pp. 445–453. Academic Press, London.Google Scholar
  43. Hogenboom, N.G. (1972a) Breaking breeding barriers in Lycopersicon. 2. Breakdown of self-incompatibility in L. peruvianum ( L.) Mill. Euphytica 21: 228–243.Google Scholar
  44. Hogenboom, N.G. (1972b) Breaking breeding barriers in Lycopersicon. 3. Inheritance of self-compatibility in L. peruvianum ( L.) Mill. Euphytica 21: 244–256.Google Scholar
  45. Hogenboom, N.G. (1972c) Breaking breeding barriers in Lycopersicon. 4. Breakdown of unilateral incompatibility between L. peruvianum (L.) Mill. and L. esculentum Mill. Euphytica 21: 397–404.CrossRefGoogle Scholar
  46. Hogenboom, N.G. (1972d) Breaking breeding barriers in Lycopersicon. 5. The inheritance of the unilateral incompatibility between L. peruvianum (L.) Mill. and L. esulentum Mill. and the genetics of its breakdown. Euphytica 21: 405–414.CrossRefGoogle Scholar
  47. Hogenboom, N.G. (1973) A model for incongruity in intimate partner relationships. Euphytica 22: 229–233.CrossRefGoogle Scholar
  48. Hogenboom, N.G. (1975) Incompatibility and incongruity: Two different mechansims for the non functioning of intimate partner relationships. Proc. R. Soc. London Ser. B 188: 361–375.Google Scholar
  49. Hogenboom, N.G. (1979) Incompatibility and incongruity in Lycopersicon. In: J.G. Hawkes, R.N. Lester and A.D. Skelding (eds.), Biology and Taxonomy of the Solanaceae, pp. 435–444. Academic Press, London.Google Scholar
  50. Hogenboom, N.G. (1986) Incongruity: non-functioning of intercellular and intracellular partner relationships through non-matching information. In: H.F. Linskens and J. Heslop-Harrison (eds.), Cellular Interactions, pp. 641–654. Springer-Verlag, Berlin.Google Scholar
  51. Jost, L. (1907) Über die Selbststerilität einiger Blüten. Botanische Zeitung 66: 77–117.Google Scholar
  52. Kenrick, J., Kaul, V. and Williams, E.G. (1986) Self-incompatibility in Acacia retinodes: site of pollen tube arrest is the nucleus. Planta 169: 245–250.CrossRefGoogle Scholar
  53. Kho, Y.O., den Nijs, A.P.M. and Franken, J. (1980) Interspecific hybridization in Cucumis L. II. The crossability of species. An investigation of in vivo pollen tube growth and seed set. Euphytica 29: 661–672.CrossRefGoogle Scholar
  54. Kinzer, S., Schwager, S. and Mutschler, M.A. (1990) Mapping of ripening-related or –specific cDNA clones of tomato (Lycopersicon esculentum). Theor. Appl. Genet. 79: 489–496.CrossRefGoogle Scholar
  55. Knox, R.B. (1986) Pollen-pistil interaction. In: H.F. Linskens and J. Heslop-Harrison (eds.), Cellular Interactions, pp. 508–608. Springer-Verlag, Berlin.Google Scholar
  56. Knox, R.B., Williams, E.G. and Dumas, C. (1986) Pollen, pistil, and reproductive function in crop plants. Plant Breeding Rev. 4: 9–79.Google Scholar
  57. Lamm, R. (1950) Self-incompatibility in Lycopersicon peruvianum Mill. Hereditas 36: 509–511.Google Scholar
  58. Lesley, M.M. (1950) A cytological basis for sterility in tomato hybrids. J. Hered. 41: 26–28.Google Scholar
  59. Lewis, D. and Crowe, L.K. (1958) Unilateral interspecific incompatibility in flowering plants. Heredity 12: 233–256.CrossRefGoogle Scholar
  60. Liedl, B.E. and Anderson, N.O. (1993) Reproductive barriers: Identification, uses and circumvention. Plant Breeding Rev. 11: 11–154.Google Scholar
  61. Liedl, B.E., McCormick, S. and Mutschier, M.A. (1994) Unilateral incongruity is distinct from self-incompatibility in expression, timing and location in crosses involving Lycopersicon pennellii and L. esculentumn. Sex. Plant Reprod. (submitted).Google Scholar
  62. Liu, S.C., Liedl, B.E. and Mutschler, M.A. (1994) Fertility and fecundity is altered in an interspecific F2 of a L. esculentum line containing L. pennellii cytoplasm x L. pennellii. Am. J. Bot. (submitted).Google Scholar
  63. Liu, S.C. (1994) Nature and genetic control of hybrid breakdown and segregation distortion in interspecific F2 populations from Lycopersicon esculentum X L. pennelli. Ph.D. thesis, Cornell University.Google Scholar
  64. Lundqvist, A. (1975) Complex self-incompatibility systems in angiosperms. Proc. R. Soc. London Ser. B 188: 235–245.CrossRefGoogle Scholar
  65. MacArthur, J.W. and Chiasson, L.P. (1947) Cytogenetic notes on tomato species and hybrids. Genetics 32: 163–177.Google Scholar
  66. Majid, R., Swaminathan, M.S. and Iyer, R.D. (1968) Production and cytogenetic analysis of interspecific hybrids in Lycopersicon. Ind. J. Genet. Plant Breeding 28: 275–286.Google Scholar
  67. Martin, F.W. (1961a) Complex unilateral hybridization in Lycopersicon hirsutum. Proc. Natl. Acad. Sci. U.S.A. 47: 855–857.PubMedCrossRefGoogle Scholar
  68. Martin, F.W. (1961b) The inheritance of self-incompatibility in hybrids of Lycopersicon esculentum Mill. x L. chilense Dun. Genetics 46: 1443–1454.PubMedGoogle Scholar
  69. Martin, F.W. (1964) The inheritance of unilateral incompatibility in Lycopersicon hirsutum. Genetics 50: 459–469.PubMedGoogle Scholar
  70. Martin, F.W. (1966) Avoiding unilateral barriers in tomato species crosses. Rpt. Tom. Genet. Coop. 16: 19–20.Google Scholar
  71. Martin, F.W. (1967) The genetic control of unilateral incompatibility between two tomato species. Genetics 56: 391–398.PubMedGoogle Scholar
  72. Martin, F.W. (1968) The behavior of Lycopersicon incompatibility alleles in an alien genetic milieu. Genetics 60: 101–109.PubMedGoogle Scholar
  73. McGuire, D.C. and Rick, C.M. (1954) Self-incompatibility in species of Lycopersicon sec. Eriopersicon and hybrids with L. esculentum. Hilgardia 23: 101–124.Google Scholar
  74. Mosseler, A. (1989) Interspecific pollen-pistil incongruity in Salix. Can. J. For. Res. 19: 1161–1168.CrossRefGoogle Scholar
  75. Mulcahy, G.B. and Mulcahy, D.L. (1983) A comparison of pollen tube growth in bi-and trinucleate pollen. In: D.L. Mulcahy and E. Ottaviano (eds.), Pollen: Biology and Implications for Plant Breeding, pp. 29–33. Elsevier Science Publishing Co., Inc., Amherst, MA.Google Scholar
  76. Mulcahy, G.B. and Mulcahy, D.L. (1988) The effect of supplemented media on the growth in vitro of bi-and trinucleate pollen. Plant Sci. 55: 213–216.CrossRefGoogle Scholar
  77. Mutschler, M.A., Cobb, E.D., Liu, S.C. and Liedl, B.E. (1994) Recurrent F1 bridging permits sexual transfer of Lycopersicon pennellii cytoplasm into tomato (L. esculentum) Sex. Plant Reprod. (submitted).Google Scholar
  78. Neal, C.A. and Topoleski, L.D. (1983) Effects of the basal medium on growth of immature tomato embryos in vitro. J. Am. Soc. Hort. Sci. 108: 434–438.Google Scholar
  79. Nettancourt, D., de (1977) Incompatibility in Angiosperms. Springer-Verlag, Berlin.Google Scholar
  80. Pandey, K.K. (1968) Compatibility relationships in flowering plants: Role of the S-gene complex. Am. Nat. 102: 475–489.Google Scholar
  81. Pundir, R.P.S. and Singh, R.B. (1985) Crossability relationships among Cajanus, Atylosia and Rhynchosia species and detection of crossing barriers. Euphytica 34: 303–308.CrossRefGoogle Scholar
  82. Pushkamath (1953) Studies on sterility in potatoes. IV. Genetics of incompatibility in Solanum aracc-papa. Euphytica 2: 49–58.Google Scholar
  83. Quiros, C., Ochoa, O. and Douches, D. (1986) L. peruvianum x L. pennellii sexual hybrids. Rpt. Tom. Genet. Coop. 36: 31–32.Google Scholar
  84. Ramanna, M.S. and Hermsen, J.G.T. (1974) Unilateral `eclipse sterility’ in reciprocal crosses between Solanum verrucosum Schlechtd. and diploid S. tuberosum L. Euphytica 23: 417–421.CrossRefGoogle Scholar
  85. Rick, C.M. (1951) Hybrids between Lycopersicon esculentum Mill. and Solanum lycopersicoides. Proc. Natl. Acad. Sci. U.S.A. 37: 741–744.PubMedCrossRefGoogle Scholar
  86. Rick, C.M. (1956) Cytogenetics of the tomato. Adv. Genet. 8: 267–382.CrossRefGoogle Scholar
  87. Rick, C.M. (1960) Hybridization between Lycopersicon esculentum and Solanum pennellii: Phylogenetic and cytogenetic significance. Proc. Natl. Acad. Sci. U.S.A. 46: 78–82.PubMedCrossRefGoogle Scholar
  88. Rick, C.M. (1963a) Barriers to interbreeding in Lycopersicon peruvianum. Evolution 17: 216–232.CrossRefGoogle Scholar
  89. Rick, C.M. (1963b) Differential zygotic lethality in a tomato species hybrid. Genetics 48: 1497–1507.Google Scholar
  90. Rick, C.M. (1969) Controlled introgression of chromosomes of Solanum pennellii into Lycopersicon esculentum: segregation and recombination. Genetics 62: 753–768.PubMedGoogle Scholar
  91. Rick, C.M. (1972) Further studies on segregation and recombination in backcross derivatives of a tomato species hybrid. Biologisches Zentralblatt 91: 209–220.Google Scholar
  92. Rick, C.M. (1976) Natural variability in wild species of Lycopersicon and its bearing on tomato breeding. Genet. Agrar. 30: 249–259.Google Scholar
  93. Rick, C.M. (1979) Biosystematic studies in Lycopersicon and closely related species of Solanum. In: J.G. Hawkes, R.N. Lester and A.D. Skelding (eds.), Biology and Taxonomy of the Solanaceae, pp. 667–677. Academic Press, London.Google Scholar
  94. Rick, C.M. (1986) Reproductive isolation in the Lycopersicon peruvianum complex. In: W.G. D’Arcy (ed.), Solanaceae: Biology and Systematics, pp. 477–495. Columbia University Press, New York.Google Scholar
  95. Rick, C.M. and Lamm, R (1955) Biosystematic studies on the status of Lycoperiscon chilense. Am. J. Bot. 42: 663–675.CrossRefGoogle Scholar
  96. Rick, C.M. and Tanksley, S.D. (1981) Genetic variation in Solanum pennellii: Comparisons with two other sympatric species. Plant Syst. Evol. 131: 31–45.Google Scholar
  97. Rick, C.M., Kesicki, E., Fobes, J.F. and Holle, M. (1976) Genetic and biosystematic studies on two new sibling species of Lycopersicon from Interandean Peru. Theor. Appl. Genet. 47: 55–68.CrossRefGoogle Scholar
  98. Rick, C.M., Fobes, J.F. and Tanksley, S.D. (1979) Evolution of mating systems in Lycopersicon hirsutum as deduced from genetic variation in electrophoretic and morphological characters. Plant Syst. Evol. 132: 279–298.CrossRefGoogle Scholar
  99. Rick, C.M., DeVerna, J.W., Chetelat, R.T. and Stevens, M.A. (1986) Meiosis in sesquidiploid hybrids of Lycopersicon esculentum and Solanum lycopersicoides. Proc. Natl. Acad. Sci. U.S.A. 83: 3580–3583.PubMedCrossRefGoogle Scholar
  100. Satina, S. and Blakeslee, A.F. (1941) Periclinal chimeras in Datura stramonium in relation to development of leaf and flower. Am. J. Bot. 28: 862–871.CrossRefGoogle Scholar
  101. Sato, Y.-I., Ishikawa, R. and Morishima, H. (1990) Nonrandom association of genes and characters found in indica x japonica hybrids of rice. Heredity 65: 75–79.CrossRefGoogle Scholar
  102. Sawant, A.C. (1956) Semilethal complementary factors in a tomato species hybrid. Evolution 10: 93–96.CrossRefGoogle Scholar
  103. Sawant, A.C. (1958) Cytogenetics of interspecific hybrids, Lycopersicon esculentum Mill. x L. hirsutum Humb. and Bonpl. Genetics 43: 502–514.PubMedGoogle Scholar
  104. Sitch, L.A. (1990) Incompatibility barriers operating in crosses of Oryza sativa with related species and genera. In: J.P. Gustafson (ed.), Gene Manipulation in Plant Improvement II, pp. 77–93. Plenum Press, New York.CrossRefGoogle Scholar
  105. Smith, P.G. (1944) Embryo culture of a tomato species hybrid. Proc. Am. Soc. Hort. Sci. 44: 413–416.Google Scholar
  106. Stout, A.B. (1952) Reproduction in Petunia. Mem. Torrey Bot. Club 20: 1–202.Google Scholar
  107. Strasburger, E. (1886) Über Fremdartige Bestäubung. Jahrbücher für wissenschaftliche Botanik 17: 50–98.Google Scholar
  108. Swaminathan, M.S. and Murty, B.R. (1957) One-way incompatibility in some species crosses in the genus Nicotiana. Ind. J. Genet. Plant Breeding 17: 23–26.Google Scholar
  109. Szymkowiak, E.J. and Sussex, I.M. (1992) The interal meristem layer (L3) determines floral meristem size and carpel number in Lycopersicon periclinal chimeras. Plant Cell 4: 1089–1100.PubMedGoogle Scholar
  110. Tammes, T. (1928) The genetics of the genus Linum. Bibliogr. Genet. 4: 1–34.Google Scholar
  111. Taylor, I.B. (1986) Biosystematics of the tomato. In: J.G. Atherton and J. Rudich (eds.), The Tomato Crop: A Scientific Basis for Improvement, pp. 1–34.Google Scholar
  112. Chapman and Hall Ltd, London. Thompson, R.C., Whitaker, T.W. and Kosar, W.F. (1941) Interspecific genetic relationships in Latuca. J. Agric. Res. 63: 91–107.Google Scholar
  113. Tilney-Bassett, R.A.E. (1986) Plant Chimeras. Edward Arnold, London.Google Scholar
  114. Valentine, D.H. (1955) Studies in British Primulas. IV. Hybridization between Primula vulgaris Huds. and P. veris L. New Phytol. 54: 70–80.CrossRefGoogle Scholar
  115. Van Tuyl, J.M., Marcucci, M.C. and Visser, T. (1982) Pollen and pollination experiments. VII. The effect of pollen treatment and application method on incompatibility and incongruity in Lilium. Euphytica 31: 613–619.CrossRefGoogle Scholar
  116. Vargas Eyre, J. and Smith, G. (1916) Some notes on the Linaceae. J. Genet. 5: 189–187.CrossRefGoogle Scholar
  117. Weeden, N.F. and Robinson, R.W. (1986) Allozyme segregation ratios in the interspecific cross Cucurbita maxima and C. ecuadorensis suggest that hybrid breakdown is not caused by minor alterations in chromosome structure. Genetics 114: 593–609.PubMedGoogle Scholar
  118. Wendel, J.F. and Parks, C.R. (1984) Distorted segregation and linkage of alcohol dehydrogenase genes in Camellia japonica L. (Theaceae). Biochem. Genet. 22: 739–748.PubMedCrossRefGoogle Scholar
  119. Woodell, S.R.J. (1960) Studies in British Primulas. VII. Development of normal seed and of hybrid seed from reciprocal crosses between P. vulgaris Huds. and P. vents L. New Phytol. 59: 302–313.CrossRefGoogle Scholar
  120. Zamir, D. and Tadmor, Y. (1986) Unequal segregation of nuclear genes in plants. Bot. Gaz. 147: 355–358.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • Martha A. Mutschler
    • 1
  • Barbara E. Liedl
    • 1
  1. 1.Department of Plant Breeding and BiometryCornell UniversityIthacaUSA

Personalised recommendations