Compact aggregation and life-history strategy in a continental Antarctic mite

  • David J. Marshall
  • Peter Convey
Part of the Series Entomologica book series (SENT, volume 55)


The continental Antarctic oribatid mite, Maudheimia wilsoni Dalenius, is often found in compact multi-instar aggregations, under stones. These aggregations may persist for several years. Relative abundances of the four juvenile instars of M. wilsoni in the aggregations suggest an increase in instar duration with progressive development from protonymph to tritonymph, with larval and protonymphal stages apparently being of similar duration. Development from egg to protonymph may occur in a single summer season but, thereafter, at most a single moult is achieved each summer. This suggests that all juvenile instars are capable of overwintering. Minimum generation time (egg-egg) must therefore be three years, but the life cycle of many individuals is probably considerably longer. Development of individuals is more closely synchronised within aggregations than in the wider population, with synchronisation being particularly apparent in the larval and protonymphal stages. Aggregation behaviour is hypothesised to improve moult synchronisation and accelerate moulting, potentially reducing the number of winters spent as a juvenile, and hence juvenile mortality. There is evidence that adults actively leave or join aggregations, possibly allowing males to locate emerging females, and females to find suitable oviposition sites. Repeated overwintering and aggregation are not unique to M. wilsoni and other Antarctic oribatid mites, but are unusual for the Oribatida in general. We suggest that these features are essential for the survival of Antarctic oribatid mites which are faced with a limited annual growing period and phylogenetically-constrained long generation times

Key words

Aggregation life history Maudheimia Oribatida continental Antarctica 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Block, W. and Convey, P. 1995. The biology, life cycle and ecophysiology of the Antarctic mite Alaskozetes antarcticus. J. Zool. 236: 431–449.CrossRefGoogle Scholar
  2. Coetzee, L. 1996. A re-evaluation of the Antarctic mite genus Maudheimia Dalenius, 1958 ( Acari, Oribatida). MSc thesis, University of Orange Free State (Bloemfontein).Google Scholar
  3. Convey, P. 1994a. Growth and survival strategy of the Antarctic mite Alaskozetes antarcticus. Ecography 17: 97–107.CrossRefGoogle Scholar
  4. Convey, P. 1994b. Oviposition of the Antarctic oribatid mite Alaskozetes antarcticus ( Acari: Cryptostigmata), with observations on other oribatid mites. Pedobiologia 38: 161–168.Google Scholar
  5. Convey, P. 1994c. The influence of temperature on individual growth rates of the Antarctic mite Alaskozetes antarcticus. Acta CEcologica 15: 43–53.Google Scholar
  6. Convey, P. 1996. The influence of environmental characteristics on life history attributes of Antarctic terrestrial biota. Biol. Rev. 71: 191–225.Google Scholar
  7. Cooper, J., Siegfried, W.R., Ryan, P.G., Crafford, J.E. and Stock, W.D. 1991. Effects of ornithogenic products on ecosystem structure and functioning: a new South African Biological Antarctic Subprogramme. S. Afr. J. Sci. 87: 223–226.Google Scholar
  8. Dalenius, P. and Wilson, O. 1958. On soil fauna of the Antarctic and of sub-Antarctic Islands. The Oribatidae ( Acari ). Arkiv for Zoologi 2: 393–425.Google Scholar
  9. Evans, G.O. 1992. Principles of Acarology. C.A.B. International, Wallingford, UK.Google Scholar
  10. Evans, G.O., Sheals, J.G. and MacFarlane, D. 1961. The terrestrial Acari of the British Isles, an introduction to their morphology, biology and classification. British Museum ( Natural History ), London.Google Scholar
  11. Goddard, D.G. 1979. Biological observations on the free-living mites of Signy Island in the maritime Antarctic. Br. Antarct. Surv. Bull. 49: 181–205.Google Scholar
  12. Haq, M.A. 1982. Pheromonal regulation of aggregation and moulting in Archegozetes longisetosus. 11th Annual. Conf. Ethol. Soc. India 19.Google Scholar
  13. Haq, M.A. 1989. Some interesting aspects of oribatid behaviour. In: The Behaviour, B.H. Patel (ed.), pp. 18–26. Sir P. P. Institute of Science, Bhavnagar.Google Scholar
  14. Joosse, E.N.G. 1970. The formation and biological significance of aggregations in the distribution of Collembola. Neth. J. Zool. 20: 299–314.Google Scholar
  15. Joosse, E.N.G. 1971. Ecological aspects of aggregation in Collembola. Rev. Ecol. Biol. Sol 8: 91–97.Google Scholar
  16. Lebrun, Ph. 1970. Ecologie et biologie de Nothrus palustris (C.L.K.). 3e note. Cycle de vie. Acarologia 12: 193–207.Google Scholar
  17. Lebrun, Ph. 1971. Ecologie et biocénotique de quelques peuplements d’arthropodes édaphiques. Mém. Inst. Roy. Sci. Nat. Belg. 165: 1–203.Google Scholar
  18. Lebrun, Ph., van Impe, G., de Saint-Georges-Gridelet, D., Wauthy, G. and André, H.M. 1991. Life strategies in mites. In: The Acari. Reproduction, development and life-history strategies, R. Schuster and P.W. Murphy (eds), pp. 3–22. Chapman and Hall, London.Google Scholar
  19. Luxton, M. 1981a. Studies on the oribatid mites of a Danish beech wood soil. VI. Seasonal population changes. Pedobiologia 21: 387–409.Google Scholar
  20. Luxton, M. 1981b. Studies on the oribatid mites of a Danish beech wood soil. IV. Developmental biology. Pedobiologia 21: 312–340.Google Scholar
  21. Luxton, M. 1981c. Studies on the oribatid mites of a Danish beech wood soil. V. Vertical distribution. Pedobiologia 21: 365–386.Google Scholar
  22. Marshall, D.J. 1996. Comparative water relations of sub-Antarctic and continental Antarctic oribatid mites. Polar Biol. 16: 287–292.CrossRefGoogle Scholar
  23. Marshall, D.J. and Pugh, P.J.A. 1996. Origin of the Acari of continental Antarctica, with particular reference to Dronning Maud Land. Zool. J. Linn. Soc. 118: 101–118.Google Scholar
  24. Marshall, D.J., Newton, I.P. and Crafford, J.E. 1995. Habitat temperature and potential locomotor activity of the continental Antarctic mite, Maudheimia petronia Wallwork ( Acari: Oribatei). Polar Biol. 15: 41–46.Google Scholar
  25. Mitchell, M.J. 1977. Life history strategies of oribatid mites. In: Biology of oribatid mites, D.L. Dindall (ed.), pp. 65–69. State University of New York, New York.Google Scholar
  26. Mitchell, M.J. 1978. Vertical and horizontal distributions of oribatid mites ( Acari: Cryptostigmata) in an aspen woodland soil. Ecology 59: 516–525.Google Scholar
  27. Mitchell, M.J. 1979. Effects of physical parameters and food resources on oribatid mites in forest soils. In: Recent advances in Acarology, Vol 1., J.G. Rodriguez (ed.), pp. 585–592. Academic Press, New York.Google Scholar
  28. Newton, I.P. 1996. Climatic data from Robertskollen, Dronning Maud Land, Antarctica, January 1993 to January 1995. S. Afr. J. Antarct. Res. 24: 103–110.Google Scholar
  29. Norton, R.A. 1994. Evolutionary aspects of oribatid mite life histories and consequences for the origin of the Astigmata. In: Mites, ecological and evolutionary analyses of life-history patterns, M.A. Houck (ed.), pp. 99–135. Chapman and Hall, London.Google Scholar
  30. Peckham, V. 1967. Studies of the mite Alaskozetes an- tarcticus (Michael). Antarct. J. U.S.A. 2: 196–197.Google Scholar
  31. Pugh, P.J.A. 1993. A synonymic catalogue of the Acari from Antarctica, the sub-Antarctic islands and the Southern Ocean. J. Nat. Hist. 27: 323–421.Google Scholar
  32. Pugh, P.J.A. 1995. Air-breathing littoral mites of sub- Antarctic South Georgia. J. Zool. 236: 649–666.CrossRefGoogle Scholar
  33. Richard, K.J., Convey, P. and Block, W. 1994. The terrestrial arthropod fauna of the Byers Peninsula, Livingston Island, South Shetland Islands. Polar Biol. 14: 371–379.Google Scholar
  34. Rockett, C.L. and Woodring, J.P. 1966. Biological investigations on a new species of Ceratozetes and of Pergalumna. Acarologia 8: 511–520.Google Scholar
  35. Ryan, P.G., Watkins, B.P., Lewis Smith, R.I., Dastych, H., Eicker, A., Foissner, W. and Thompson, G. 1989. Biological survey of Robertskollen, western Dronning Maud Land: area description and preliminary species lists. S. Afr. J. Antarct. Res. 19: 10–20.Google Scholar
  36. Schatz, H. 1985. The life cycle of an alpine oribatid mite, Oromurcia sudetica Willmann. Acarologia 26: 95100.Google Scholar
  37. Schenker, R. 1984a. Spatial and seasonal distribution patterns of oribatid mites ( Acari: Oribatei) in a forest soil ecosystem. Pedobiologia 27: 133–149.Google Scholar
  38. Schenker, R. 1984b. The ecological significance of the abundance and distributional pattern of Tectocepheus velatus (Acari: Oribatei) in a temperate mixed forest. In: Acarology VI, Vol. 1, D.A. Griffiths and C.E. Bowman (eds), pp. 519–527. Ellis Norwood, Chichester.Google Scholar
  39. Sibly, R.M. and Calow, P. 1986. Physiological ecology of animals. Blackwell Scientific Publications, Oxford.Google Scholar
  40. Somme, L. 1986. Ecology of Cryptopygus sverdrupi (Insecta: Collembola) from Dronning Maud Land, Antarctica. Polar Biol. 6: 179–184.Google Scholar
  41. Somme, L., Stromme, A. and Zachariassen, K.E. 1993. Notes on the ecology and physiology of the Antarctic oribatid mite Maudheimia wilsoni. Polar Res. 12: 21–25.CrossRefGoogle Scholar
  42. Strong, J. 1967. Ecology of terrestrial arthropods at Palmer Station, Antarctic Peninsula. Antarct. Res. Ser. 10: 357–371.Google Scholar
  43. Sugawara, H., Ohyama, Y. and Higashi, S. 1995. Distribution and temperature tolerance of the Antarctic free-living mite Antarcticola meyeri ( Acari, Cryptostigmata). Polar Biol. 15: 1–8.Google Scholar
  44. Tilbrook, P.J. 1973. Terrestrial arthropod ecology at Signy Island, South Orkney Islands. PhD thesis, University of London.Google Scholar
  45. Travé, J. and Duran, F. 1971. Développement et comportement en laboratoire de Neoribates gracilis Travé ( Acarien Oribate ). Vie Milieu 22: 79–89.Google Scholar
  46. Usher, M.B. 1975. Seasonal and vertical distribution of a population of soil arthropods: Cryptostigmata. Pedobiologia 15: 364–374.Google Scholar
  47. Usher, M.B. and Booth, R.G. 1984. Arthropod communities in a maritime Antarctic moss-turf habitat: three-dimensional distribution of mites and Collembola. J. Anim. Ecol. 53: 427–441.Google Scholar
  48. Usher, M.B. and Booth, R.G. 1986. Arthropod communities in a maritime Antarctic moss-turf habitat: multiple scales of pattern in the mites and Collembola. J. Anim. Ecol. 55: 155–170.Google Scholar
  49. Wallwork, J.A. 1962. Maudheimia petronia, an oribatid mite from Antarctica. Pac. Insects 4: 865868.Google Scholar
  50. Webb, N.R. 1977. Observations on Steganacarus magnus: general biology and life cycle. Acarologia 19: 686–696.Google Scholar
  51. Webb, N.R. 1989. Observations on the life cycle of Steganacarus magnus ( Acari: Cryptostigmata). Pedobiologia 33: 293–299.Google Scholar
  52. West, C.C. 1982. Life histories of three species of sub- antarctic oribatid mites. Pedobiologia 23: 59–67.Google Scholar
  53. Woodring, J.P. and Cook, E.F. 1962a. The internal anatomy, reproductive physiology, and molting process of Ceratozetes cisalpinus. Ann. Entomol. Soc. Am. 55: 164–181.Google Scholar
  54. Woodring, J.P. and Cook, E.F. 1962b. The biology of Ceratozetes cisalpinus Berlese, Scheloribates laevigatus Koch, and Oppia neerlandica Oudemans ( Oribatei), with a description of all life stages. Acarologia 4: 101–137.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • David J. Marshall
    • 1
  • Peter Convey
    • 2
  1. 1.FitzPatrick InstituteUniversity of Cape TownRondeboschSouth Africa
  2. 2.Natural Environment Research Council, High CrossBritish Antarctic SurveyCambridgeUK

Personalised recommendations