Advertisement

INTLAB — INTerval LABoratory

  • Siegfried M. Rump
Chapter

Abstract

INTLAB is a toolbox for Matlab supporting real and complex intervals, and vectors, full matrices and sparse matrices over those. It is designed to be very fast. In fact, it is not much slower than the fastest pure floating point algorithms using the fastest compilers available (the latter, of course, without verification of the result). Beside the basic arithmetical operations, rigorous input and output, rigorous standard functions, gradients, slopes and multiple precision arithmetic is included in INTLAB. Portability is assured by implementing all algorithms in Matlab itself with exception of exactly one routine for switching the rounding downwards, upwards and to nearest. Timing comparisons show that the used concept achieves the anticipated speed with identical code on a variety of computers, ranging from PC’s to parallel computers. INTLAB is freeware and may be copied from our home page.

Keywords

Matrix Multiplication Operation Count Interval Matrix Verification Algorithm Interval Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.P. Abbott and R.P. Brent. Fast Local Convergence with Single and Multistep Methods for Nonlinear Equations. Austr. Math. Soc. 19 (Series B), pages 173–199, 1975.Google Scholar
  2. 2.
    ACRITH High–Accuracy Arithmetic Subroutine Library, Program Description and User’s Guide. IBM Publications, No. SC 33–6164–3, 1986.Google Scholar
  3. 3.
    G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic Press, New York, 1983.MATHGoogle Scholar
  4. 4.
    E. Anderson, Z. Bai, C. Bischof, J. Demme], J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-marling, A. McKenney, S. Ostrouchov, and Sorensen D.C. LAPACK User’s Guide, Resease 2.0. SIAM Publications, Philadelphia, second edition edition, 1995.Google Scholar
  5. 5.
    ARITHMOS, Benutzerhandbuch, Siemens AG, Bibl.-Nr. U 2900-I-Z87–1 edition, 1986.Google Scholar
  6. 6.
    J.J. Dongarra, J.J. Du Croz, I.S. Duff, and S.J. Hammarling. A set of level 3 basic linear algebra subprograms. ACM Trans. Math. Software, 16: 1–17, 1990.MATHCrossRefGoogle Scholar
  7. 7.
    J.J. Dongarra, J.J. Du Croz, S.J. Hammarling, and R.J. Hanson. An extended set of Fortran basic linear algebra subprograms. ACM Trans. Math. Software, 14 (1): 1–17, 1988.MATHCrossRefGoogle Scholar
  8. 8.
    D. Husung. ABACUS - Programmierwerkzeug mit hochgenauer Arithmetik für Algorithmen mit verifizierten Ergebnissen. Diplomarbeit, Universität Karlsruhe, 1988.Google Scholar
  9. 9.
    D. Husung. Precompiler for Scientific Computation (TPX). Technical Report 91. 1, Inst. f. Informatik III, TU Hamburg-Harburg, 1989.Google Scholar
  10. 10.
    ANSI/IEEE 754–1985, Standard for Binary Floating-Point Arithmetic, 1985.Google Scholar
  11. 11.
    R.B. Kearfott, M. Dawande, K. Du, and C. Hu. INTLIB: A portable Fortran-77 elementary function library. Interval Comput., 3 (5): 96–105, 1992.Google Scholar
  12. 12.
    R.B. Kearfott, M. Dawande, and C. Hu. INTLIB: A portable Fortran-77 interval standard function library. ACM Trans. Math. Software, 20: 447–459, 1994.MATHCrossRefGoogle Scholar
  13. 13.
    R. Klatte, U. Kulisch, M. Neaga, D. Ratz, and Ch. Ullrich. PASCAL-XSC - Sprachbeschreibung mit Beispielen. Springer, 1991.Google Scholar
  14. 14.
    O. Knüppel. PROFIL/BIAS–A Fast Interval Library. Computing, 53: 277–287, 1994.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    O. Knüppel. PROFIL/BIAS and extensions, Version 2. 0. Technical report, Inst. f. Informatik III, Technische Universität Hamburg-Harburg, 1998.Google Scholar
  16. 16.
    R. Krawczyk. Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken. Computing, 4: 187–201, 1969.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    R. Krier. Komplexe Kreisarithmetik. PhD thesis, Universität Karlsruhe, 1973.Google Scholar
  18. 18.
    C. Lawo. C-XSC, a programming environment for verified scientific computing and numerical data processing. In E. Adams and U. Kulisch, editors, Scientific computing with automatic result verification, pages 71–86. Academic Press, Orlando, Fla., 1992.Google Scholar
  19. 19.
    C.L. Lawson, R.J. Hanson, D. Kincaid, and F.T. Krogh. Basic Linear Algebra Subprograms for FORTRAN usage. ACM Trans. Math. Soft., 5: 308–323, 1979.MATHCrossRefGoogle Scholar
  20. 20.
    R.E. Moore. A Test for Existence of Solutions for Non-Linear Systems. SIAM J. Numer. Anal. 4, pages 611–615, 1977.CrossRefGoogle Scholar
  21. 21.
    A. Neumaier. Interval Methods for Systems of Equations. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1990.MATHGoogle Scholar
  22. 22.
    S. Oishi. private communication, 1998.Google Scholar
  23. 23.
    S.M. Rump. Kleine Fehlerschranken bei Matrixproblemen. PhD thesis, Universität Karlsruhe, 1980.MATHGoogle Scholar
  24. 24.
    S.M. Rump. Validated Solution of Large Linear Systems. In R. Albrecht, G. Alefeld, and H.J. Steter, editors, Computing Supplementum, volume 9, pages 191–212. Springer, 1993.Google Scholar
  25. 25.
    S.M. Rump. Fast and parallel interval arithmetic. BIT, 39 (3): 539–560, 1999.MathSciNetCrossRefGoogle Scholar
  26. 26.
    T. Sunaga. Theory of an Interval Algebra and its Application to Numerical Analysis. RAAG Memoirs, 2: 29–46, 1958.Google Scholar
  27. 27.
    J. Zemke. b4m - BIAS for Matlab. Technical report, Inst. f. Informatik III, Technische Universität Hamburg-Harburg, 1998.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Siegfried M. Rump
    • 1
  1. 1.Inst. f. Informatik IIITechnical University Hamburg-HarburgHamburgGermany

Personalised recommendations