State of the Art
  • Angelo Spena
  • Giuseppe Leonardo Rotino


The fruit provides a proper environment for seed production, protection and dispersal. Fruit set and development usually takes place only after pollination and fertilization, and fertilized fruits contain seeds. The development of fruits without pollination and fertilization is called parthenocarpy. Parthenocarpic fruits are seedless. Therefore, seedless fruits represent the uncoupling of the genetic programme for fruit development from the one ensuring seed production and, consequently, its evolutionary function. Parthenocarpy is interesting also for applied reasons. It offers the possibility of improving fruit quality and productivity in many crop plants grown for their fruits. Environmental conditions adverse for pollen production, germination and fertilization negatively affect fruit production and quality. Thus, parthenocarpy is considered the most efficient way to produce fruits under environmental conditions adverse for pollination and/or fertilization. Moreover, in some crops the absence of seeds can improve fruit quality (e.g., eggplant), while in other plant species (e.g., Actinidia) parthenocarpy might also improve productivity because pollinator plants are no longer needed. Lastly, parthenocarpy allows early fruit production and harvest. Thus, parthenocarpy represents a tool to rationalize and improve fruit quality and production in the plant species grown for their fruits.


Fruit Development Chimeric Gene Parthenocarpic Fruit Cactus Pear Triploid Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acciarri, N., Ferrari, V., Vitelli, G., Ficcadenti, N., Pandolfini, T., Spena, A. and Rotino, G.L. (2000) Effetto della partenocarpia in ibridi di pomodoro geneticamente modificati, Inf. Agrario 4, 117–121.Google Scholar
  2. Bartel, B. and Fink, G.R. (1995) ILR1, an amidohydrolase that releases active indole-3-acetic acid from conjugates, Science 268, 1745–1748.PubMedCrossRefGoogle Scholar
  3. Barg, R. and Salts,Y. (1996) Method for the induction of genetic parthenocarpy in plants, Patent App. N° 1L19960117139; Patent N° W09730165.Google Scholar
  4. Bouquet, A. and Danglot, Y. (1996) Inheritance of seedlessness in grapevine (Vitis viniftra L.), Vitis 35, 35–42.Google Scholar
  5. Carmi, N., Salts, N., Shabtai, S., Pilowsky, M., Barg, R. and Dedicova, B. (1997) Transgenic parthenocarpy due to specific over-sensitization of ovary to auxin, Acta Hortic. 447, 579–581.Google Scholar
  6. Donzella., G., Spena, A. and Rotino, G.L. (2000) Transgenic parthenocarpic eggplants: superior germplasm for increased winter production, MoL Breed. 6, 79–86.CrossRefGoogle Scholar
  7. Ficcadenti, N., Sestili, S., Pandolfini, T., Cirillo, C., Rotino, G.L. and Spena, A. (1999) Genetic engineering of parthenocarpic fruit development in tomato, Mol. Breed. 5, 463–470.CrossRefGoogle Scholar
  8. Fitting, H. (1909) Die beeinflussung der Orchideenbluten durch die Bestaubung und durch andere Umstande, Z. Bot. 1, 1–86.Google Scholar
  9. Galitski, T., Saldanha, A.J., Styles, C.A., Lander, E.S. and Fink, G.R. (1999) Ploidy regulation of gene expression, Science 285, 251–254.PubMedCrossRefGoogle Scholar
  10. Gillapsy, G., Ben-David, H. and Grulssem,W. (1993) Fruits: A developmental perspective, Plant Cell 5, 1439–1451.Google Scholar
  11. Glass, N.L. and Kosuge, T. (1988) Role of indoleacetic acid-lysine synthase in regulation of indoleacetic acid pool size and virulence of Pseudomonas syringae subsp. Savastanoi, Bacteriol. 170, 2367–2373.Google Scholar
  12. Griggs, W.H. and Iwakiri, B.T. (1954) Pollination and parthenocarpy in the production of “Bartlett” pears in California, Hilgardia 22, 643–678.Google Scholar
  13. Grossniklaus, U. and Vielle-Calzada, J.P. (1998) Seed specific polycomb group gene and methods of use for same. Patent Application Number USI9980061769. PN W09953083.Google Scholar
  14. Grossniklaus, U., Vielle-Calzada, J.P., Hoeppner, M.A. and Gagliano, W.B. (1998) Maternal control of embryogenesis by MEDEA, a polycomb group gene of Arabidopsis, Science 280, 446–450.PubMedCrossRefGoogle Scholar
  15. Gustafson, F.G. (1939a) The cause of natural parthenocarpy, Amer. J Bot. 26, 135–138. Gustafson, F.G. (1939b) Auxin distribution in fruits and its significance in fruit development, Amer. J Bot. 26, 189–194.CrossRefGoogle Scholar
  16. Gustafson, F.G. (1942) Parthenocarpy: Natural and artificial, Bot Rev. 8, 599–654.CrossRefGoogle Scholar
  17. Hagen, G., Martin, G., Li, Y. and Guilfoyle, T.J. (1991) Auxin-induced expression of the soybean GH3 promoter in transgenic tobacco plants, Plant Mol. Biol. 17, 567–579.PubMedCrossRefGoogle Scholar
  18. Hennart, J.W. (1996) Sélection de l’aubergine, PHM Rev. Hortic. 374, 37–40.Google Scholar
  19. Kihara, H. (1951) Triploid watermelon, Proc Amer. Soc. Hortic. Sci. 58, 217–230.Google Scholar
  20. Kim, I.S., Okubo, H. and Fujieda, K., (1992) Endogenous level of IAA in relation to parthenocarpy in cucumber (Cucumis sativus L.), Sci. Hortic. 52, 1–8.CrossRefGoogle Scholar
  21. Kosuge,T., Heskett, M.G. and Wilson, E.E. (1966) Microbial synthesis and degradation of the indole-3-acetic acid, J. BioL Chem. 241, 3738–3744.Google Scholar
  22. Kulkarni, V. and Rameshwar, A. (1978) Natural and gibberellic acid induced parthenocarpy in mango: cv. Thambva, Curr. Sci. 47, 353–355.Google Scholar
  23. Ledbetter, C.A. and Burgos L. (1994) Inheritance of stenospermocarpic seedlessness in Vitis vinifera L., J Hered. 85, 157–160.Google Scholar
  24. Lee, T.H., Sugiyama, A., Takeno, K., Ohno, H. and Yamaki, S. (1997) Changes in content of indole-3-acetic acid and in activities of sucrose metabolizing enzyme during fruit growth in eggplant (Solanum melongena L.), J Plant Physiol. 150, 292–296.CrossRefGoogle Scholar
  25. Li, Y. (1997) Transgenic seedless fruit and methods, Patent Appl.N° US1997060045725; W09849888A I.Google Scholar
  26. Lin, B.-Y. (1984) Ploidy barrier to endosperm development in maize, Genetics 107, 103–115.PubMedGoogle Scholar
  27. Lin, S., George W.L. and Splittstoesser W.F. (1984) Expression and inheritance of partenocarpy in “Severianin” tomato, J. Hered. 75, 62–66.Google Scholar
  28. Liu, Z.B., Ulmasov, T., Shi, X., Hagen, G. and Guilfoyle, T.J. (1994) Soybean GH3 promoter contains multiple auxin-inducible elements, Plant Cell 6, 645–657.PubMedGoogle Scholar
  29. Lukyanenko, A.N. (1991) Parthenocarpy in tomato, in G. Kalloo (ed.), Genetic Improvement of Tomato. Monograph on Theoretical and Applied Genetics, Springer Verlag, Berlin, pp. 167–175.CrossRefGoogle Scholar
  30. Ma, H., Yanofsky, M.F. and Meyerowitz, EM (1991) AGL1–AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes, Genes Dev. 5, 484495.Google Scholar
  31. Mapelli, S., Bricchi, D., Cantoni, M. and Soressi, G.P. (1994) Gene pat-2 e livelli di fitoregolatori endogeni, allegagione e caratteristiche produttive in un ibrido di pomodoro, Atti II Giornate Scientifiche SOI, S. Benedetto del Tronto, 22–24 Giugno, pp. 213–214.Google Scholar
  32. Mazzucato, A., Taddei, A. R. and Soressi, G. P. (1998) The parthenocarpic fruit (pat) mutant of tomato (Lycopersicon esculentum Mill.) sets seedless fruits and has aberrant anther and ovule development, Development 125, 107–114.PubMedGoogle Scholar
  33. Nitsch, J.P. (1950) Growth and morphogenesis of the strawberry as related to auxin, Amer. J. Bot. 37, 211–215.CrossRefGoogle Scholar
  34. Nitsch, J.P. (1970) Hormonal factors in growth and development, in. A.C. Hulme (ed.), The Biochemistry of Fruits and their Products. Vol. II, Academic Press, London, pp. 427–472.Google Scholar
  35. Nyeki, J., Soltesz, M. and Ivancsics, J. (1998) Natural tendency to parthenocarpy of pear. Acta Hortic. 475, 367–377.Google Scholar
  36. Ortiz, R. and Vuylsteke, D. (1995) Effect of the parthenocarpy gene P1 and ploidy on fruit and bunch traits of plantain-banana hybrids, Heredity 75, 460–465.CrossRefGoogle Scholar
  37. Paddon, C.J. and Hartley, R.W. (1987) Expression of Bacillus amyloliquefaciens extracellular ribonuclease (barnase) in Escherichia coli following an inactivating mutation, Gene 53, 11–9.Google Scholar
  38. Philouze, J. (1983) Parthenocarpie naturelle chez la tomate, I. Rev. Bibliograph. Agro. 3, 611620.Google Scholar
  39. Philouze, J. (1985) Parthenocarpie naturelle chez la tomate. II. Etude d’une collection variètale, Agronomie 5, 47–54.CrossRefGoogle Scholar
  40. Philouze, J., Buret, M., Duprat, F., Nicolas-Grotte and Nicolas, J. (1988) Caractèristiques agronomiques et physico-chimiques de lignèes de tomate isogèniques, sauf pou gène pat-2 de parthènocarpie, dans trois types varietaux, en cultures de printemps, sous serre plastique très peu chauffèe, Agronomie 8, 817–828.Google Scholar
  41. Pike, L.M. and Peterson, C.E. (1969) Inheritance of parthenocarpy in the cucumber (Cucumis sativus L.), Euphytica 18, 101–105.Google Scholar
  42. Robinson, R.W., Cantliffe, D.J. and Shannon, S. (1971) Morphactin induced parthenocarpy in the cucumber, Science 171, 1251–1252.PubMedCrossRefGoogle Scholar
  43. Rotino, G.L., Sommer, H., Saedler, H. and Spena, A. (1996) Methods for producing parthenocarpic or female sterile transgenic plants and methods for enhancing fruit setting and development, Priority N° EPO 96120645.5.Google Scholar
  44. Rotino, G.L., Perri, E., Zottini, M., Sommer, H. and Spena, A. (1997) Genetic engineering of parthenocarpic plants, Nature Biotech. 15, 1398–1401.Google Scholar
  45. Salts, Y.R., Wachs, R., Gruissem, W. and Barg, R. (1991) Sequence coding for a novel proline-rich protein preferentially expressed in young tomato fruit, Plant Mol. Biol. 17, 149–150.PubMedCrossRefGoogle Scholar
  46. Savidge, B., Rounsley, S.D. and Yanofsky, M.F. (1995) Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes, Plant Cell 7, 721–733.PubMedGoogle Scholar
  47. Schwabe, W.W. and Mills, J.J. (1981) Hormones and parthenocarpic fruit set: A literature survey, Hortic. Abstr. 51, 661–698.Google Scholar
  48. Shozo, M. and Keita, S. (1997) Creation of seedless fruit, Patent AppL N° JPI9970279331; PN: JP I 1103705.Google Scholar
  49. Szectman, A.D., Saltz, Y., Carmi, N., Shabtai, S., Pilowsky, M. and Barg, R. (1997) Seedless fruit setting in response to NAM treatment of transgenic tomato expressing the iaaH gene specifically in the ovary, Acta Hortic. 447, 597–598.Google Scholar
  50. Tomes,D.T., Miller, P.D. and Bensen, R.I. (1996a) Transgenic methods and compositions for producing parthenocarpic fruits and vegetables, US Patent Appt N° 641479. PN:US5877400.Google Scholar
  51. Tomes, D.T., Huang, B. and Miller, P.D. (1996b) Genetic constructs and methods for producing fruits with very little or diminished seed, US Patent AppL N° 636283. PN: US5773697.Google Scholar
  52. Tobutt, K.R. (1994) Combining apetalous parthenocarpy with columnar growth habit in apple, Euphytica 77, 51–54.CrossRefGoogle Scholar
  53. Tsao, T. (1980) Growth substances: Role in fertilization and sex expression, in F. Skoog (ed.), Plant Growth Substances, Spring-Verlag, N.Y., pp. 345–348.Google Scholar
  54. Vardy, E., Lapushner, D., Genizi, A. and Hewitt, J. (1989a). Genetics of parthenocarpy in tomato under a low temperature regime: I. Line RP 75/59, Euphytica 41, 1–8.CrossRefGoogle Scholar
  55. Vardy, E., Lapushner, D., Genizi, A. and Hewitt, J. (1989b). Genetics of parthenocarpy in tomato under a low temperature regime: II. Cultivar “Severianin”, Euphytica 41, 9–15.CrossRefGoogle Scholar
  56. Weiss, J., Nerd, A. and Mirzahi, Y. (1993) Vegetative parthenocarpy in the cactus pear Opuntia ficus-indica (1.)Mill., Ann. Bot. 72: 521–526.CrossRefGoogle Scholar
  57. Yamada, T., Palm, C.J., Brooks, B. and Kosuge, T. (1985) Nucleotide sequence of the Pseudomonas savastanoi indoleacetic acid genes show homology with Agrobacterium tumefaciens T-DNA, Proc. Natl. Acad. Sci. USA 82, 6522–6526.PubMedCrossRefGoogle Scholar
  58. Yasuda, S. (1934) Parthenocarpy caused by the stimulus of pollination in some plants of Solanaceae, Agric. Hortic. 9, 647–656.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Angelo Spena
    • 1
  • Giuseppe Leonardo Rotino
    • 2
  1. 1.Faculty of ScienceUniversity of VeronaVeronaItaly
  2. 2.Research Institute for Vegetable CropsMontanaso L (LO)Italy

Personalised recommendations