Computer Simulation of Biomolecular Systems pp 451-465 | Cite as
New trends in computational structure prediction of ligand-protein complexes for receptor-based drug design
Abstract
A number of challenging computational problems arise in the field of structure-based drug design, including the estimation of ligand binding affinity and the de novo design of novel ligands. An important step toward solutions of these problems is the consistent and rapid prediction of the thermodynamically most favorable structure of a ligand—protein complex from the three-dimensional structures of its unbound ligand and protein components. This fundamental problem in molecular recognition is commonly known as the docking problem [1–3]. To solve this problem, two distinct conditions must be satisfied. The first is a thermodynamic requirement: the energy function used to describe ligand—protein binding must have the crystal structure of ligand—protein complexes as its global energy minimum. The second is a kinetic requirement: it must be possible to locate consistently and rapidly the global energy minimum on the ligand—protein binding energy landscape. While the first condition is necessary for successful structure prediction, it is by no means sufficient. Without kinetic accessibility, the global minimum cannot be reached during docking simulations, and computational structure prediction will fail. Here we review approaches to address both the kinetic and thermodynamic aspects of the docking problem.
Keywords
Structure Prediction Energy Landscape Docking Simulation Rotatable Bond Ligand AtomPreview
Unable to display preview. Download preview PDF.
References
- 1.Wodak, S.J. and Janin, J., J. Mol. Biol., 124(1978)323.Google Scholar
- 2.Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E., J. Mol. Biol., 161(1982)269.Google Scholar
- 3.Cherfils, J. and Janin, J., Curr. Opin. Struct. Biol., 3(1993)265.Google Scholar
- 4.Shoichet, B.K. and Kuntz, I.D., J. Mol. Biol., 221(1991)327.Google Scholar
- 5.Wang, H.J., J. Comput. Chem., 12(1991)746.Google Scholar
- 6.Jiang, F. and Kim, S.H., J. Mol. Biol., 219(1991)79.Google Scholar
- 7.Desjarlais, R.L., Sheridan, R.P., Dixon, J.S., Kuntz, I.D. and Venkataraghavan, R., J. Med. Chem., 29 (1986) 2149.Google Scholar
- 8.Desjarlais, R.L. and Dixon, J.S., J. Comput.-Aided Mol. Design, 8(1994)231.Google Scholar
- 9.Shoichet, B.K. and Kuntz, I.D., Protein Eng., 6(1993)723.Google Scholar
- 10.Walls, P.H. and Sternberg, M.J.E., J. Mol. Biol., 228(1992)277.Google Scholar
- 11.Jackson, R.M. and Sternberg, M.J.E., J. Mol. Biol., 250(1995)258.Google Scholar
- 12.Stoddard, B.L. and Koshland, D.E., Proc. Natl. Acad. Sci. USA, 90 (1993) 1146.Google Scholar
- 13.Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A.A., Aflalo, C. and Vakser, I.A., Proc. Natl. Acad. Sci. USA, 89 (1992) 2195.Google Scholar
- 14.Fisher, D., Lin, S.L., Wolfson, H.J. and Nussinov, R., J. Mol. Biol., 248(1995)459.Google Scholar
- 15.Vakser, I.A. and Aflalo, C., Proteins Struct. Funct. Genet., 20(1994)320.Google Scholar
- 16.Goodsell, D.S. and Olson, A.J., Proteins Struct. Funct. Genet., 8(1990)195.Google Scholar
- 17.Yue, S.Y., Proteins, 4 (1990) 177.Google Scholar
- 18.Caflisch, A., Niederer, P. and Anliker, M., Proteins Struct. Funct. Genet., 13(1992)223.Google Scholar
- 19.Hart, T.N. and Read, R.J., Proteins Struct. Funct. Genet., 13(1992)206.Google Scholar
- 20.Totrov, M. and Abagyan, R., Nat. Struct. Biol., 1(1994)259.Google Scholar
- 21.DiNola, A., Roccatano, D. and Berendsen, H.J.C., Proteins Struct. Funct. Genet., 19(1994)174.Google Scholar
- 22.Zacharias, M., Luty, B.A., Davis, M.E. and McCammon, J.A., J. Mol. Biol., 238 (1994)455.Google Scholar
- 23.Leach, A.R., J. Mol. Biol., 235(1994)345.Google Scholar
- 24.Kuhl, F.S., Crippen, G.M. and Friesen, D.K., J. Comput. Chem., 5(1984)24.P.A. Repo et al. Google Scholar
- 25.Levinthal, C., In DeBrunner, P., Tsibris, J. and Munck, E. (Eds.) Mossbauer Spectroscopy in Biological Systems, Proceedings of a meeting held at Allerton House, Monticello, Urbana, IL, University of Illinois Press, Champaign, IL, 1969, pp. 22–24.Google Scholar
- 26.Bryngelson, J.D. and Wolynes, P.G., Proc. Natl. Acad. Sci. USA, 84(1987)7524.Google Scholar
- 27.Goldstein, R.A., Luthey-Schulten, Z.A. and Wolynes, P.G., Proc. Natl. Acad. Sci. USA, 89(1992)9029.Google Scholar
- 28.Shakhnovich, E.I. and Gutin, A.M., Proc. Natl. Acad. Sci. USA, 90(1993)7195.Google Scholar
- 29.Sali, A., Shakhnovich, E.I. and Karplus, M., J. Mol. Biol., 235 (1994) 1614.Google Scholar
- 30.Chan, H.S. and Dill, K.A., J. Chem. Phys., 100(1994)9238.Google Scholar
- 31.Leopold, P.E., Montai, M. and Onuchic, J.N., Proc. Natl. Acad. Sci. USA, 89(1992)8721.Google Scholar
- 32.Socci, N.D. and Onuchic, J.N., J. Chem. Phys., 101 (1994) 1519.Google Scholar
- 33.Bryngelson, J.D., Onuchic, J.N., Socci, N.D. and Wolynes, P.G., Proteins Struct. Funct. Genet., 21(1995)167.Google Scholar
- 34.Dill, K.A., Bromberg, S., Yue, K., Fiebig, K.M., Yee, D.P., Thomas, P.D. and Chan, H.S., Protein Sci., 4(1995)561.Google Scholar
- 35.Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA, 1989.Google Scholar
- 36.Xiao, Y.L. and Williams, D.E., J. Phys. Chem., 98(1994)7191.Google Scholar
- 37.Oshiro, C.M., Kuntz, I.D. and Dixon, J.S., J. Comput.-Aided Mol. Design, 9(1995)113.Google Scholar
- 38.Judson, R.S., Tan, Y.T., Mori, E., Melius, C., Jaeger, E.P., Treasurywala, A.M. and Mathiowetz, A., J. Comput. Chem., 16 (1995) 1405.Google Scholar
- 39.Clark, K.P. and Ajay, J. Comput. Chem., 16 (1995) 1210.Google Scholar
- 40.Jones, G., Willett, P. and Glen, R.C., J. Mol. Biol., 245(1995)43.Google Scholar
- 41.Verkhivker, G.M., Rejto, P.A., Gehlhaar, D.K. and Freer, S.T., Proteins Struct. Funct. Genet., 25(1996)342.Google Scholar
- 42.McGarrah, D.B. and Judson, R.S., J. Comput. Chem., 14 (1993) 1385.Google Scholar
- 43.Judson, R.S., Jaeger, E.P., Treasurywala, A.M. and Peterson, M.L., J. Comput. Chem., 14 (1993) 1407.Google Scholar
- 44.Unger, R. and Moult, J., J. Mol. Biol., 231(1993)75.Google Scholar
- 45.Sun, S., Protein Sci., 2(1993)762.Google Scholar
- 46.Dandekar, T. and Argos, P., Protein Eng., 5(1992)637.Google Scholar
- 47.Dandekar, T. and Argos, P., J. Mol. Biol., 236(1994)844.Google Scholar
- 48.Fogel, D.B., Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, IEEE Press, Piscataway, NJ, 1995.Google Scholar
- 49.Bowie, J.U. and Eisenberg, D., Proc. Natl. Acad. Sci. USA, 91(1994)4436.Google Scholar
- 50.Gehlhaar, D.K., Verkhivker, G., Rejto, P.A., Fogel, D.B., Fogel, L.J. and Freer, S.T., In McDonnell, J.R., Reynolds, R.G. and Fogel, D.B. (Eds.) Proceedings of the 4th Annual Conference on Evolutionary Programming, MIT Press, Cambridge, MA, 1995, pp. 615–627.Google Scholar
- 51.Gehlhaar, D.K., Verkhivker, G.M., Rejto, P.A., Sherman, C.J., Fogel, D.B., Fogel, L.J. and Freer, S.T., Chem. Biol., 2(1995)317.Google Scholar
- 52.Verkhivker, G.M. and Rejto, P.A., Proc. Natl. Acad. Sci. USA, 93(1996)60.Google Scholar
- 53.Schwefel, H.-P., Numerical Optimization of Computer Models, Wiley, Chichester, 1981.Google Scholar
- 54.Standard deviations of the Gaussian mutations S for each variable were generatedwhere N(0,1) represents a zero-mean, unit variance Gaussian random number, and n is the number of variables in the optimization. Ni(0,1) indicates that a different random numberchosen for each component of the individual. The learning rate T influences the movement of the individual with respect to the parent, while the learning rate t influences- variations between components of the individual. This formula was obtained from Ref. 53.Google Scholar
- 55.Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P., Numerical Recipes in C. The Art of Scientific Computing, Cambridge University Press, Cambridge, 1992.Google Scholar
- 56.Yue, K. and Dill, K.A., Protein Sci., 5(1996)254.Google Scholar
- 57.Elofsson, A., Le Grand, S.M. and Eisenberg, D., Proteins Struct. Funct. Genet., 23(1995)73.Google Scholar
- 58.Gehlhaar, D.K., Moerder, K.E., Zichi, D., Sherman, C.J., Ogden, R.C. and Freer, S.T., J. Med. Chem., 38(1995)466.Google Scholar
- 59.Knegtel, R.M.A., Antoon, J., Rullmann, C., Boelens, R. and Kaptein, R., J. Mol. Biol., 235(1994)318.Google Scholar
- 60.Mayo, S.L., Olafson, B.D. and Goddard III, W.A., J. Phys. Chem., 94(1990)8897.Google Scholar
- 61.Wlodawer, A. and Erickson, J.W., Annu. Rev. Biochem., 62(1993)543.Google Scholar
- 62.Appelt, K., Perspect. Drug Discov. Design, 1(1993)23.Google Scholar
- 63.Reich, S.H., Melnick, M., Davies II, J.F., Appelt, K., Lewis, K.K., Fuhry, M.A., Pino, M., Trippe, A.J., Nguyen, D., Dawson, H., Wu, B.-W., Musick, L., Kosa, M., Kahil, D., Webber, S., Gehlhaar, D.K., Andrada, D. and Shetty, B., Proc. Natl. Acad. Sci. USA, 92(1995)3298.Google Scholar
- 64.Swain, A.L., Miller, M.M., Green, J., Rich, D.H., Schneider, J., Kent, S.B.H. and Wlodawer, A., Proc. Natl. Acad. Sci. USA, 87(1990)8805.Google Scholar