New trends in computational structure prediction of ligand-protein complexes for receptor-based drug design

  • Paul A. Rejto
  • Gennady M. Verkhivker
  • Daniel K. Gehlhaar
  • Stephan T. Freer
Part of the Computer Simulations of Biomolecular Systems book series (CSBS, volume 3)


A number of challenging computational problems arise in the field of structure-based drug design, including the estimation of ligand binding affinity and the de novo design of novel ligands. An important step toward solutions of these problems is the consistent and rapid prediction of the thermodynamically most favorable structure of a ligand—protein complex from the three-dimensional structures of its unbound ligand and protein components. This fundamental problem in molecular recognition is commonly known as the docking problem [1–3]. To solve this problem, two distinct conditions must be satisfied. The first is a thermodynamic requirement: the energy function used to describe ligand—protein binding must have the crystal structure of ligand—protein complexes as its global energy minimum. The second is a kinetic requirement: it must be possible to locate consistently and rapidly the global energy minimum on the ligand—protein binding energy landscape. While the first condition is necessary for successful structure prediction, it is by no means sufficient. Without kinetic accessibility, the global minimum cannot be reached during docking simulations, and computational structure prediction will fail. Here we review approaches to address both the kinetic and thermodynamic aspects of the docking problem.


Structure Prediction Energy Landscape Docking Simulation Rotatable Bond Ligand Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wodak, S.J. and Janin, J., J. Mol. Biol., 124(1978)323.Google Scholar
  2. 2.
    Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E., J. Mol. Biol., 161(1982)269.Google Scholar
  3. 3.
    Cherfils, J. and Janin, J., Curr. Opin. Struct. Biol., 3(1993)265.Google Scholar
  4. 4.
    Shoichet, B.K. and Kuntz, I.D., J. Mol. Biol., 221(1991)327.Google Scholar
  5. 5.
    Wang, H.J., J. Comput. Chem., 12(1991)746.Google Scholar
  6. 6.
    Jiang, F. and Kim, S.H., J. Mol. Biol., 219(1991)79.Google Scholar
  7. 7.
    Desjarlais, R.L., Sheridan, R.P., Dixon, J.S., Kuntz, I.D. and Venkataraghavan, R., J. Med. Chem., 29 (1986) 2149.Google Scholar
  8. 8.
    Desjarlais, R.L. and Dixon, J.S., J. Comput.-Aided Mol. Design, 8(1994)231.Google Scholar
  9. 9.
    Shoichet, B.K. and Kuntz, I.D., Protein Eng., 6(1993)723.Google Scholar
  10. 10.
    Walls, P.H. and Sternberg, M.J.E., J. Mol. Biol., 228(1992)277.Google Scholar
  11. 11.
    Jackson, R.M. and Sternberg, M.J.E., J. Mol. Biol., 250(1995)258.Google Scholar
  12. 12.
    Stoddard, B.L. and Koshland, D.E., Proc. Natl. Acad. Sci. USA, 90 (1993) 1146.Google Scholar
  13. 13.
    Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A.A., Aflalo, C. and Vakser, I.A., Proc. Natl. Acad. Sci. USA, 89 (1992) 2195.Google Scholar
  14. 14.
    Fisher, D., Lin, S.L., Wolfson, H.J. and Nussinov, R., J. Mol. Biol., 248(1995)459.Google Scholar
  15. 15.
    Vakser, I.A. and Aflalo, C., Proteins Struct. Funct. Genet., 20(1994)320.Google Scholar
  16. 16.
    Goodsell, D.S. and Olson, A.J., Proteins Struct. Funct. Genet., 8(1990)195.Google Scholar
  17. 17.
    Yue, S.Y., Proteins, 4 (1990) 177.Google Scholar
  18. 18.
    Caflisch, A., Niederer, P. and Anliker, M., Proteins Struct. Funct. Genet., 13(1992)223.Google Scholar
  19. 19.
    Hart, T.N. and Read, R.J., Proteins Struct. Funct. Genet., 13(1992)206.Google Scholar
  20. 20.
    Totrov, M. and Abagyan, R., Nat. Struct. Biol., 1(1994)259.Google Scholar
  21. 21.
    DiNola, A., Roccatano, D. and Berendsen, H.J.C., Proteins Struct. Funct. Genet., 19(1994)174.Google Scholar
  22. 22.
    Zacharias, M., Luty, B.A., Davis, M.E. and McCammon, J.A., J. Mol. Biol., 238 (1994)455.Google Scholar
  23. 23.
    Leach, A.R., J. Mol. Biol., 235(1994)345.Google Scholar
  24. 24.
    Kuhl, F.S., Crippen, G.M. and Friesen, D.K., J. Comput. Chem., 5(1984)24.P.A. Repo et al. Google Scholar
  25. 25.
    Levinthal, C., In DeBrunner, P., Tsibris, J. and Munck, E. (Eds.) Mossbauer Spectroscopy in Biological Systems, Proceedings of a meeting held at Allerton House, Monticello, Urbana, IL, University of Illinois Press, Champaign, IL, 1969, pp. 22–24.Google Scholar
  26. 26.
    Bryngelson, J.D. and Wolynes, P.G., Proc. Natl. Acad. Sci. USA, 84(1987)7524.Google Scholar
  27. 27.
    Goldstein, R.A., Luthey-Schulten, Z.A. and Wolynes, P.G., Proc. Natl. Acad. Sci. USA, 89(1992)9029.Google Scholar
  28. 28.
    Shakhnovich, E.I. and Gutin, A.M., Proc. Natl. Acad. Sci. USA, 90(1993)7195.Google Scholar
  29. 29.
    Sali, A., Shakhnovich, E.I. and Karplus, M., J. Mol. Biol., 235 (1994) 1614.Google Scholar
  30. 30.
    Chan, H.S. and Dill, K.A., J. Chem. Phys., 100(1994)9238.Google Scholar
  31. 31.
    Leopold, P.E., Montai, M. and Onuchic, J.N., Proc. Natl. Acad. Sci. USA, 89(1992)8721.Google Scholar
  32. 32.
    Socci, N.D. and Onuchic, J.N., J. Chem. Phys., 101 (1994) 1519.Google Scholar
  33. 33.
    Bryngelson, J.D., Onuchic, J.N., Socci, N.D. and Wolynes, P.G., Proteins Struct. Funct. Genet., 21(1995)167.Google Scholar
  34. 34.
    Dill, K.A., Bromberg, S., Yue, K., Fiebig, K.M., Yee, D.P., Thomas, P.D. and Chan, H.S., Protein Sci., 4(1995)561.Google Scholar
  35. 35.
    Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA, 1989.Google Scholar
  36. 36.
    Xiao, Y.L. and Williams, D.E., J. Phys. Chem., 98(1994)7191.Google Scholar
  37. 37.
    Oshiro, C.M., Kuntz, I.D. and Dixon, J.S., J. Comput.-Aided Mol. Design, 9(1995)113.Google Scholar
  38. 38.
    Judson, R.S., Tan, Y.T., Mori, E., Melius, C., Jaeger, E.P., Treasurywala, A.M. and Mathiowetz, A., J. Comput. Chem., 16 (1995) 1405.Google Scholar
  39. 39.
    Clark, K.P. and Ajay, J. Comput. Chem., 16 (1995) 1210.Google Scholar
  40. 40.
    Jones, G., Willett, P. and Glen, R.C., J. Mol. Biol., 245(1995)43.Google Scholar
  41. 41.
    Verkhivker, G.M., Rejto, P.A., Gehlhaar, D.K. and Freer, S.T., Proteins Struct. Funct. Genet., 25(1996)342.Google Scholar
  42. 42.
    McGarrah, D.B. and Judson, R.S., J. Comput. Chem., 14 (1993) 1385.Google Scholar
  43. 43.
    Judson, R.S., Jaeger, E.P., Treasurywala, A.M. and Peterson, M.L., J. Comput. Chem., 14 (1993) 1407.Google Scholar
  44. 44.
    Unger, R. and Moult, J., J. Mol. Biol., 231(1993)75.Google Scholar
  45. 45.
    Sun, S., Protein Sci., 2(1993)762.Google Scholar
  46. 46.
    Dandekar, T. and Argos, P., Protein Eng., 5(1992)637.Google Scholar
  47. 47.
    Dandekar, T. and Argos, P., J. Mol. Biol., 236(1994)844.Google Scholar
  48. 48.
    Fogel, D.B., Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, IEEE Press, Piscataway, NJ, 1995.Google Scholar
  49. 49.
    Bowie, J.U. and Eisenberg, D., Proc. Natl. Acad. Sci. USA, 91(1994)4436.Google Scholar
  50. 50.
    Gehlhaar, D.K., Verkhivker, G., Rejto, P.A., Fogel, D.B., Fogel, L.J. and Freer, S.T., In McDonnell, J.R., Reynolds, R.G. and Fogel, D.B. (Eds.) Proceedings of the 4th Annual Conference on Evolutionary Programming, MIT Press, Cambridge, MA, 1995, pp. 615–627.Google Scholar
  51. 51.
    Gehlhaar, D.K., Verkhivker, G.M., Rejto, P.A., Sherman, C.J., Fogel, D.B., Fogel, L.J. and Freer, S.T., Chem. Biol., 2(1995)317.Google Scholar
  52. 52.
    Verkhivker, G.M. and Rejto, P.A., Proc. Natl. Acad. Sci. USA, 93(1996)60.Google Scholar
  53. 53.
    Schwefel, H.-P., Numerical Optimization of Computer Models, Wiley, Chichester, 1981.Google Scholar
  54. 54.
    Standard deviations of the Gaussian mutations S for each variable were generatedwhere N(0,1) represents a zero-mean, unit variance Gaussian random number, and n is the number of variables in the optimization. Ni(0,1) indicates that a different random numberchosen for each component of the individual. The learning rate T influences the movement of the individual with respect to the parent, while the learning rate t influences- variations between components of the individual. This formula was obtained from Ref. 53.Google Scholar
  55. 55.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P., Numerical Recipes in C. The Art of Scientific Computing, Cambridge University Press, Cambridge, 1992.Google Scholar
  56. 56.
    Yue, K. and Dill, K.A., Protein Sci., 5(1996)254.Google Scholar
  57. 57.
    Elofsson, A., Le Grand, S.M. and Eisenberg, D., Proteins Struct. Funct. Genet., 23(1995)73.Google Scholar
  58. 58.
    Gehlhaar, D.K., Moerder, K.E., Zichi, D., Sherman, C.J., Ogden, R.C. and Freer, S.T., J. Med. Chem., 38(1995)466.Google Scholar
  59. 59.
    Knegtel, R.M.A., Antoon, J., Rullmann, C., Boelens, R. and Kaptein, R., J. Mol. Biol., 235(1994)318.Google Scholar
  60. 60.
    Mayo, S.L., Olafson, B.D. and Goddard III, W.A., J. Phys. Chem., 94(1990)8897.Google Scholar
  61. 61.
    Wlodawer, A. and Erickson, J.W., Annu. Rev. Biochem., 62(1993)543.Google Scholar
  62. 62.
    Appelt, K., Perspect. Drug Discov. Design, 1(1993)23.Google Scholar
  63. 63.
    Reich, S.H., Melnick, M., Davies II, J.F., Appelt, K., Lewis, K.K., Fuhry, M.A., Pino, M., Trippe, A.J., Nguyen, D., Dawson, H., Wu, B.-W., Musick, L., Kosa, M., Kahil, D., Webber, S., Gehlhaar, D.K., Andrada, D. and Shetty, B., Proc. Natl. Acad. Sci. USA, 92(1995)3298.Google Scholar
  64. 64.
    Swain, A.L., Miller, M.M., Green, J., Rich, D.H., Schneider, J., Kent, S.B.H. and Wlodawer, A., Proc. Natl. Acad. Sci. USA, 87(1990)8805.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Paul A. Rejto
    • 1
  • Gennady M. Verkhivker
    • 1
  • Daniel K. Gehlhaar
    • 1
  • Stephan T. Freer
    • 1
  1. 1.Agouron Pharmaceuticals Inc.San DiegoUSA

Personalised recommendations