Advertisement

Development of Bioprocesses for the Conservation, Detoxification and Value-Addition of Coffee Pulp and Coffee Husk

  • S. Roussos
  • C. Augur
  • I. Perraud-Gaime
  • D. L. Pyle
  • G. Saucedo-Castañeda
  • C. R. Soccol
  • A. Pandey
  • I. Ferrao
  • M. Raimbault
Chapter

Abstract

A collaborative effort by research teams from France, the UK, Mexico and Brazil funded by the European Union INCO-DC programme (contract no IC18*CT970185) was initiated with the global objective of recycling the coffee pulp and coffee husk by biotechnological processes. Mexico alone produces more than 300,000 metric tons of grain coffee each year using ‘wet-processing’ technology resulting coffee pulp as the waste residue. The Brazilian State of Parana produced 220,000 metric tons of grain coffee in 1998 using ‘dry-processing’ technology resulting coffee husk as the waste residue. Considering the great volume of this agro-industrial waste, its high biodegradability and its potential as feed source for animals, a proposal was set-up to stabilize fresh pulp by the lactic acid silage technique, as it is being produced, during the crop season. However, Recalcitrant and Toxic Compounds (RTC) such as caffeine, tannins and polyphenols need to be removed. RTC’s actually represent a strong limitation on the use of coffee pulp/husk as a nutritive source for animal feeding purposes (Bressani, 1979). They also cause serious problems of environmental contamination (Violle et al., 1995; Zambrano-Franco et al., 1999). Ensiling of coffee pulp and its further utilization could avoid the rapid degradation of the material, which quickly becomes a very significant source of contamination of water in coffee growing areas (Zuluaga, 1989). The stabilized and detoxified coffee pulp/husk will be further utilized after the crop season as animal feed or for mushroom, fungal metabolites, or enzymes production (Perraud-Gaime, 1995; Ramirez-Martinez, 1999; Pandey and Soccol, 2000).

Keywords

Lactic Acid Bacterium Filamentous Fungus Solid State Fermentation Coffee Bean Waste Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abate A., Pfeffer E. (1986), Changes in nutrient intake and performance by goats fed coffee pulp based diets followed by a commercial concentrate. Anim. Feed Sci. Technol., 1: 1–10CrossRefGoogle Scholar
  2. Aguilar C., Augur C., Viniegra G., Favela E. (1999), Production of fungal tannase in a model system by solid state fermentation. Paper presented at III SIBAC, 24–28 May, Londrina, BrazilGoogle Scholar
  3. Alvarez-Gallo J. (1991), Despulpado de café sin agua. Avances Técnicos Cenicafé, N° A64: 1–6Google Scholar
  4. Alvarez-Gallo J. (1995) Evaluacion de la despulpadora vertical PENAGOS 255C, operada sin agua. CENICAFE, Chinchina, febrero 3 de 1995Google Scholar
  5. Antier P., Minjares A., Roussos S., Viniegra-Gonzalez G. (1993a), New approach for selecting hyper-producing mutants of Aspergillus niger well adapted to solid state fermentation. Biotechnol. Adv., 11: 429–440Google Scholar
  6. Antier P., Minjares A., Roussos S., Raimbault M., Viniegra-Gonzalez G. (1993b), Selective medium for the isolation of pectinase hyper-producing mutants of Aspergillus niger C28B25 for solid-state fermentation of coffee pulp. Enzyme Microbial Technol., 15: 254–260CrossRefGoogle Scholar
  7. Avallone S. (1999), Etude de la fermentation naturelle de Coffea arabica L. et des mécanismes de fluidification du tissu mucilagineux. PhD Thesis, Université de Montpellier 11, FranceGoogle Scholar
  8. Boccas F., Roussos S., Gutierrez-Rojas M., Viniegra-Gonzalez G. (1994), Production of pectinase from coffee pulp in solid state fermentation system: Selection of wild fungal isolates of high potency by a simple three-step screening technique. J. Food Sci. Technol., 31 (1): 22–26Google Scholar
  9. Brand D. (1999), Detoxificaçäo biologica da casca de café por fungos filamentosos em fermentaçäo no estado sôlido. Tese de Mestrado; Tecnologia de Alimentos da Universidade Federal do Parana- Curitiba, BrazilGoogle Scholar
  10. Brand D., Pandey A., Roussos S., Soccol, C.R. (2000), Biological detoxification of coffee husk by filamentous fungi using a solid state fermentation system, Enzyme Microb. Technol., in pressGoogle Scholar
  11. Bressani R. (1979), Factores antifisiologicos de la pulpa de café. In- Pulpa de café: composiciôn, tecnologia y utilizaciön. Braham J.E., Bressani R. (eds.), Ottawa, Canada, International Development Research Centre, pp. 143–152Google Scholar
  12. Cabezas M.T., Estrada E., Murillo B., Gonzalez J.M., Bressani R (1976), Coffee pulp and husks. 12. Effect of storage on the nutritive value of coffee pulp for calves. Arch. Latinoamer. Nutr., 2: 203–215Google Scholar
  13. Cabezas M.T., Estrada E., Murillo B., Gonzalez J.M., Bressani R. (1977), Response of calves to coffee pulp, caffeine and tannic acid in the ratio. Mem. Latinoamer. Prod. Anim., 15–21Google Scholar
  14. Campos-Montiel R., Viniegra-Gonzalez G. (1995), Utilization of a consortion of cellulolytic bacteria grown on a continuous anaerobic digesteras a bioassay of probiotic extracts from fungal origin. Biotechnol. Tech., 9: 65–68Google Scholar
  15. Castillo M., Bailly H., Violle P., Pommares P., Sallée B. (1993), Tratamiento de las aguas resisuales de los beneficios hfinedos de café, ana“lisis de un proyecto piloto en la cuenca de Coatepec Ver. (México). ASIC, 15e Colloque Scientifique International, Montpellier, FranceGoogle Scholar
  16. Christensen M.S. (1981), Preliminary tests on the suitability of coffee pulp in the diets of Common Carp (Cyprius carpio L) and catfisf (Clarias mossambicus peters). Aquaculture, 25: 235–242CrossRefGoogle Scholar
  17. Denis S. (1996), Dégradation de la caféine par Aspergillus sp. et Penicillium sp. Etude physiologique et biochimique. PhD Thesis, Université de Montpellier II, FranceGoogle Scholar
  18. Denis S., Augur C., Marin B., Roussos S. (1998). A new HPLC analytical method to study fungal caffeine metabolism. Biotechnol. Tech., 12: 359–362Google Scholar
  19. Elias L.C. (1978), Composicion quimica de la pulpa de café y otros subproductos. In- Pulpa de café: composicidn, tecnologfa y utilizacidn. Braham, J.E. and Bressani, R. ( eds. ), ICAP, 19–29Google Scholar
  20. Fan L. (1999), Produçâo de fungo comestfvel do gênero Pleurotus em bioresiduos da agroindustria do café. Tese de Mestrado; Curso de Pos Graduaçäo em Tecnologia de Alimentos da Universidade Federal do Parana“- Curitiba, BrazilGoogle Scholar
  21. Fan L., Pandey A., Vandenberghe L.P.S., Soccol C.R. (1999a), Effect of caffeine on Pleurotus sp. and bioremediation of caffeinated residues. IX European Congr. Biotechnol., July 11–15, Brussels, Belgium, p. 2664- AGoogle Scholar
  22. Fan L., Pandey A., Soccol C.R. (1999b), Cultivation of Pleurotus sp. on coffee residues. Proc. 3`d Internatl. Conf. Mushroom Biology and Mushroom Products, Sydney, Australia, pp 301–310Google Scholar
  23. Fan L., Pandey A., Soccol C.R. (1999c), Growth of Lentinus edodes on the coffee industry residues and fruiting body production. Proc. 3rd Internatl. Conf. Mushroom Biology and Mushroom Products, Sydney, Australia, pp 293–300Google Scholar
  24. Fan L., Pandey A., Mohan R., Soccol C.R. (2000a), Comparison of coffee industry residues for production of Pleurotus ortreatus in solid state fermentation, Acta Biotechnol., 20(1), in pressGoogle Scholar
  25. Fan L., Pandey A., Soccol C.R. (2000b), Solid state cultivation-an efficient technique to utilize toxic agroindustrial residues. J. Basic Microbiol., 40(3), in press.Google Scholar
  26. Favela E., Huerta S., Roussos S., Olivares G., Nava G., Viniegra-Gonzalez G., Gutierrez M. (1989), Producciôn de enzimas a partir de la pulpa de café y su aplicaciôn en el beneficio htmedo. in Memorias I Seminario Internacional de Biotecnologfa en la Agroinddistria Cafetalera, Roussos, S., Licona-Franco, R., Gutierrez-Rojas, M. (eds.), INMECAFE, Xalapa, pp. 144–151Google Scholar
  27. Garcia R.C., Baynes D.R. (1974), Cultivo de Tilapia aurea (Staindachner) en corrales de 100m2, alimentada artificialmente con gallinazas y un alimento preparado con 30% de pulpa de café. Ministerio de Agricultura y Ganaderia, Dir. Gen. de Pecursos Nat. Ren., El Salvador, p. 23Google Scholar
  28. Haki.l M. (1999), Dégradation de la caféine par les champignons filamenteux, purification d’une théophylline déméthylase d’Aspergillus tamarii. PhD Thesis, Université de Franche Conté, BesançonGoogle Scholar
  29. Hakil M., Denis S., Viniegra-Gonzalez G., Augur C. (1998), Degradation and product analysis of caffeine and related dimethylxanthines by filamentous fungi. Enzyme Microb. Technol., 22: 355–359Google Scholar
  30. Hakil M., Voisinet F., Viniegra-Gonzalez G., Augur C. (1999), Caffeine degradation in solid state fermentation by Aspergillus tamarii: Effects of additional nitrogen sources. Process Biochem., 35: 103–109Google Scholar
  31. Jacquet M. (1993), Altemativas tecnologicas al beneficio hümedo en relaci6n con la conservacion del medio ambiente. IICA, Boletfn PROMECAFE 61: 5–10Google Scholar
  32. Machado C.M.M., Oliveira B.H., Pandey A., Soccol C.R. (1999), Coffee husk as a substrate for the production of gibberellic acid by fermentation Paper presented in III SIBAC, May 24–28, Londrina, Brazil, p. 39Google Scholar
  33. Pandey A., Soccol C.R. (2000), Economic utilization of crop residues for value addition-A futuristic approach. J. Sci. Ind. Res., 59: 12–22Google Scholar
  34. Perraud-Gaime I. (1995), Cultures mixtes en milieu solide de bactéries lactiques et de champignons filamenteux pour la conservation et la décaféination de la pulpe de café. PhD Thesis, Université de Montpellier II, FranceGoogle Scholar
  35. Perraud-Gaime I., Roussos S. (1997a), Selection of filamentous fungi for decaffeination of coffee pulp in solid state fermentation prior to formation of conidiospores. In- Advances in solid state fermentation, Roussos, S., Lonsane, B.K., Raimbault, M. and Viniegra-Gonzalez, G. (eds.), Kluwer Acad. Publ., Dordrecht, pp. 209–221Google Scholar
  36. Perraud-Gaime I., Roussos S. (1997b). Preservation of coffee pulp by ensiling: Influence of biological additives. In- Advances in solid state fermentation, Roussos S., Lonsane B.K., Raimbault M. and Viniegra-Gonzalez G. (eds.), Kluwer Acad. Publ., Dordrecht, pp. 193–207Google Scholar
  37. Porres C., Alvarez D, Calzada J. (1993), Caffeine reduction in coffee pulp through silage. Biotechnol. Adv., 11: 519–523Google Scholar
  38. Ramirez-Martinez J. (1999), Pulpa de café ensilada. Produccion, caracterizacion y utilizacion en alimentacion animal. Universidad Nacional Experimental del Taxhira (UNET) San Cristobal, Tachira, VenezuelaGoogle Scholar
  39. Romano-Machado J., Gutierrez-Sanchez G., Perraud-Gaime I., Gutierrez-Rojas M., Saucedo-Castafieda G. (1999), Degradaci6n de cafeina en pulpa de café fresca y ensilada por fermentacién en medio sôlido: influencia des tratamiento del sustrato y el nivel de in6culo. Paper presented in III SIBAC, Londrina, Brazil, p. 46Google Scholar
  40. Roussos S., Aquiahuatl R.M.A., Cassaigne J., Favela E., Gutierrez M., Hannibal L., Huerta S., Nava G., Raimbault M., Rodriguez W., Salas J.A., Sanchez R., Trejo M., Viniegra G.G. (1989), Detoxificacién de la pulpa de café por fermentacion s6lida. in Memorias I Sem. Intern. Biotecnol. Agroindust. Café (I SIBAC), Roussos, S., Licona-Franco, R., Gutierrez-Rojas, M. (eds.), Xalapa, Mexico, pp. 121–143Google Scholar
  41. Roussos S., Pyle D. L. (1998), Continuous enzymes and fungal metabolite production in solid state fermentation using a counter-current reactor. In- Proc. International Trg. course Solid State Fermentation, Raimbault, M., Soccol, C. R. and Chuzel, G. (eds.), ORSTOM, Montpellier, pp. 21–35Google Scholar
  42. Roussos S., Perraud-Gaime I., Denis S. (1998), Biotechnological management of coffee pulp. In- Proc. International Trg. course Solid State Fermentation, Raimbault, M., Soccol, C. R. and Chuzel, G. (eds.), ORSTOM, Montpellier, pp. 251–261Google Scholar
  43. Ruiz M.E., Ruiz A. (1977), Effect of intake of green forage on intake of coffee pulp and weight gain of young cattle. Turrialba, 1: 23–28Google Scholar
  44. Saucedo-Castafieda G., Romano-Machado J.M., Gutierrez-Sanchez G., Ramirez-Romero G., Perraud-Gaime I. (1999), Experiencia mexicana na valorizaçao biotecnologica de la pulpa do café. Paper presented in I II SIBAC, Londrina, BrazilGoogle Scholar
  45. Soares M. (1998), Biossfntese de Metab6litos Volâteis Frutais Por Pachysolen tannophylus e Ceratocystis fimbriata pela Fermentaçäo no Estado S6lido sobre Casca de Café. Tese de Mestrado, Curso de Ns Graduaçäo em Tecnologia de Alimentos da Universidade Federal do Parana- Curitiba, BrazilGoogle Scholar
  46. Soares M., Christen P., Pandey A. Soccol C.R. (2000), Fruity flavour production by Ceratocystis fimbriata grown on coffee husk in solid state fermentation. Process Biochem., (2000), in pressGoogle Scholar
  47. Soto-Cruz O., Saucedo-Castafieda G., Favela-Torres, E. (1999), Efecto del nivel de inoculo sobre el cultivo por lote de la bacteria ruminai Megasphaera elsdenii. Congreso Latinoamericano de Biotecnologia y Bioingenierfa, Huatulco, Oaxaca, México, 12–17 septembre p. 44Google Scholar
  48. Suzuki-Lopez A. (1999), Isolation and partial characterization of lactic acid bacteria for controlled silage production of coffee pulp. Maestria de Biotecnologia, UAM-Iztapalapa, MexicoGoogle Scholar
  49. Tapia I.M., Herrera S. R., Viniegra G., Gutierrez R.M., Roussos S. (1989) Pulpa de café fermentada: su use como aditivo en la alimentacifn de rumiantes, in Memorias I Sem. Intern. Biotechnol. Agroindust. Café (I. SIBAC), Roussos, S., Licona-Franco, R., Gutierrez-Rojas, M. (eds.), Xalapa, Mexico, pp. 153–175Google Scholar
  50. Urquiza G. (1989), Un futuro Café? Notables perspectivas para los cafetaleros. ICYT-Informacion, 11 (154): 40–43Google Scholar
  51. Van de Lagemaat J., Pyle D.L., Augur C. (1999). The screening of fungi for the production of fungal tannases in solid state fermentation. Paper presented in I II SIBAC, Londrina, BrazilGoogle Scholar
  52. Vargas E., Cabezas M.T., Murillo B., Braham J.E., Bressan R. (1982), Effect of large amounts of dried coffee pulp on growth and adaptation of young steers. Arch. Latinoamer. Nutr., 4: 973–989Google Scholar
  53. Vasquez-Morera R. (1993), Influencia de la recirculaci6n de las aguas del despulpado del café sobre su calidad. IICA-PROMECAFE/IHCAFE, Seminario regional sobre el mejoramiento de la calidad del café, 22–24 September San Pedro SulaGoogle Scholar
  54. Viniegra-Gonzalez G. (1989), Introduccifin, In- Proc. I Seminario Internacional sobre Biotecnologia en la Agroindustria Cafetalera, Roussos, S., Licona-Franco, R., Gutierrez-Rojas, M. (eds.), INMECAFE, UAM-I and ORSTOM, Xalapa, Ver., Mexico, pp. 13–15Google Scholar
  55. Viniegra-Gonzalez G. (1993), Por qué es necesario Renovar y mejorar la tecnologia del beneficio del café? ICYT, Ciencia y Tecnologia, CONACYT, Mexico: 15: 41–46Google Scholar
  56. Violle P., Pommares P., Vivier D., Castillo M., Sallee B. (1995), Tlapexcatl, unité pilote d’épuration des eaux résiduaires d’une usine ä café au Mexique. Plantations, Recherche, Développement, vol. 2 n°3 (Montpellier), pp. 35–44Google Scholar
  57. Woiciechowski A., Soccol C.R., Pandey A., Busato E. (1999), Selective hydrolyses of hemicellulose fraction of coffee husk for production of sugars. Paper presented in III SIBAC, Londrina, Brazil, p. 54Google Scholar
  58. Zambrano-Franco Q.A., Isaza-Hinestroza I.D., Rodriguez-Valencia N., Lopez-Posada U. (1999), Tratamiento de aguas residuales del lavado del café. CENICAFE, Boletin Técnico N° 20: 1–26Google Scholar
  59. Zuluaga J.V. (1989), Utilizaci6n integral de los subproductos del café. In- Proc. I Seminario Internacional sobre Biotecnologia en la Agroindiistria Cafetalera, Roussos, S., Licona-Franco, R., Gutierrez-Rojas, M. (eds.), INMECAFE, UAM-I and ORSTOM, Xalapa, Ver., Mexico, pp. 63–76Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • S. Roussos
    • 1
  • C. Augur
    • 1
  • I. Perraud-Gaime
    • 1
  • D. L. Pyle
    • 2
  • G. Saucedo-Castañeda
    • 3
  • C. R. Soccol
    • 4
  • A. Pandey
    • 4
  • I. Ferrao
    • 5
  • M. Raimbault
    • 1
  1. 1.Laboratoire de Microbiologie IRD, IFR-BAIMUniversité de Provence, ESIL, Case 925Marseille cedex 9France
  2. 2.Department of Food Science and TechnologyThe university of Reading, WhiteknightsReadingUK
  3. 3.Departamento de BiotecnologiaUniversidad Autonoma Metropolitana-IztapalapaMexico DFMexico
  4. 4.Laboratorio de Processos Biotecnologicos, Departamento do Engenharia QuimicaUniversidade Federal do ParanaCuritibaBrazil
  5. 5.DG XII/B4 -INCO-DCBrusselsBelgium

Personalised recommendations