Insulin Lispro (Humalog)

  • Ronald E. Chance
  • N. Bradly Glazer
  • Kathleen L. Wishner


Initially discovered in 1921, insulin was first made commercially available in 1923. Up until the early 1980s, all insulin preparations used medically were obtained by direct extraction from the pancreatic tissue of animals. In 1982, Humulin ® (recombinant human insulin) became the first recombinant therapeutic product to gain marketing approval. By the mid-1980s, efforts to develop insulin analogues displaying improved therapeutic properties were well underway. Insulin LISPRO (Humalog(R)) is such an analogue which has gained regulatory approval for general medical use. It is identical to human insulin except that the Pro-Lys amino acid sequence at positions B28 and B29 of the native molecule are reversed.

Insulin lispro has a more rapid onset of activity and a shorter duration of action when compared to regular human insulin while maintaining equal glucose lowering ability. Insulin lispro provides better postprandial glucose control at a more convenient time relative to consumption of a meal.

Key words

Insulin insulin analogues insulin lispro lispro Humalog Diabetes diabetes mellitus rapid acting insulin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banting, F.G. et al. (1922). The internal secretion of the pancreas. American Journal of Physiology, 59, 479.Google Scholar
  2. 2.
    Banting, F.G. and Best, C.H. (1922). The internal secretion of the pancreas. Journal of Laboratory and Clinical Medicine, 7, 251–266.Google Scholar
  3. 3.
    Bliss, M. (1996). The discovery of insulin. 75th Anniversary Edition. McClelland and Stewart, Inc., Toronto 11.Google Scholar
  4. 4.
    Bliss, M. (1993). The history of insulin. Diabetes Care, 16 (Suppl. 3), 4–7.Google Scholar
  5. 5.
    Sherwin, R.S. (1996). Diabetes Mellitus. In: Bennett, J.C. and Plum, F. (eds.) Cecil Textbook of Medicine, 20th ed. W.B. Saunders Company, Philadelphia. p. 1265.Google Scholar
  6. 6.
    Chance, R.E. and Frank, B.H. (1993). Research, development, production, and safety of biosynthetic human insulin. Diabetes Care, 16 (Suppl. 3), 133–142.Google Scholar
  7. 7.
    Galloway, J.A. and Chance, R.E. (1994). Improving insulin therapy: achievements and challenges. Hormone And Metabolic Research, 26 (12), 591–598.CrossRefGoogle Scholar
  8. 8.
    Brange, J. et al. (1990). Monomeric insulins and their experimental and clinical implications. Diabetes Care, 13 (9), 923–954.CrossRefGoogle Scholar
  9. 9.
    The Diabetes Control and Complications Trial Research Group (DCCT). (1993). The effect of intensive treatment of diabetes on the development and progression of longterm complications in insulin-dependent diabetes mellitus. New England Journal of Medicine, 329, 977–986.CrossRefGoogle Scholar
  10. 10.
    Reichard, P. et al. (1993). The effect of long-term intensified insulin treatment on the development of microvascular complications of diabetes mellitus. The New England Journal of Medicine, 329, 304–309.CrossRefGoogle Scholar
  11. 11.
    Ohkubo, Y. et al. (1995). Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Research and Clinical Practice, 28(2), 103–117.Google Scholar
  12. 12.
    JDFI World Conference on Diabetes Research. (1985). Current Status, Future Directions. Report of the Juvenile Diabetes Foundation International World Conference on Diabetes Research (Nov2–6, Monaco). p. 42.Google Scholar
  13. 13.
    Schlichtkrull, J. et al. (1974). Monocomponent insulin and its clinical implications. Hormone and Metabolic Research, (Suppl. Ser) 5, 134–143.Google Scholar
  14. 14.
    Chance, R.E. et al. (1976). The immunogenicity of insulin preparations. Acta Endocrinologica, 83 (Suppl. 205), 185–196.Google Scholar
  15. 15.
    Hall, S.S. (1988). Invisible Frontiers. The race to synthesise a human gene. Sidgwick and Jackson Limited, London.Google Scholar
  16. 16.
    Beckman, A.O. and Roberts, E. (1988). Genetically Engineered Insulin Videotape. National Academy of Sciences and Beckman Research Institute of the City of Hope December 1, 1988. Copy of the videotaped proceedings available through the History of Medicine Division of the National Library of Medicine, Bethesda MD and can be obtained via interlibrary loan per personal communication with John Parascandola, Chief, History of Medicine Division.Google Scholar
  17. 17.
    Goeddel, D.V. et al. (1979). Expression in Escherichia coli of chemically synthesized genes for human insulin. Proceedings of the National Academy of Sciences of the United States of America, 76 (1), 106–110.CrossRefGoogle Scholar
  18. 18.
    Itakura, K. et al. (1977). Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science, 198, 1056–1063.CrossRefGoogle Scholar
  19. 19.
    Itakura, K. and Riggs, A.D. (1980). Chemical DNA synthesis and recombinant DNA studies. Science, 209, 1401–1405.CrossRefGoogle Scholar
  20. 20.
    Itakura, K. et al. (1984). Synthesis and use of synthetic oligonucleotides. Annual Review of Biochemistry, 53, 323–356.CrossRefGoogle Scholar
  21. 21.
    Riggs, A.D. et al. (1980). Synthesis, cloning, and expression of hormone genes in Escherichia coli. Recent Progress in Hormone Research, 36, 261–276.Google Scholar
  22. 22.
    Crea, R. et al. (1978). Chemical synthesis of genes for human insulin. Proceedings of the National Academy of Sciences of the United States of America, 75 (12), 5765–5769.CrossRefGoogle Scholar
  23. 23.
    Johnson, I.S. (1983). Human insulin from recombinant DNA technology. Science, 219, 632–637.CrossRefGoogle Scholar
  24. 24.
    Frank, B.H. et al. (1981). The production of human proinsulin and its transformation to human insulin and C-peptide. In: Rich, D.H. and Gross, E. (eds.) PEPTIDES: Synthesis-Structure-Function. Proceedings of the Seventh American Peptide Symposium. Pierce Chemical Company, Rockford. pp. 729–738.Google Scholar
  25. 25.
    Galloway, J.A. et al. (1992). Biosynthetic human proinsulin. Review of chemistry, in vitro and in vivo receptor binding, animal, and human pharmacology studies, and clinical trial experience. Diabetes Care, 15 (5), 666–692.CrossRefGoogle Scholar
  26. 26.
    DiMarchi, R. et al. (1989). Synthesis of insulin-like growth factor I through recombinant DNA techniques and selective chemical cleavage at tryptophan. In: Tam, J.P. and Kaiser, E.T. (eds.) Synthetic Peptides: Approaches to Biological Problems. Alan R Liss, Inc., New York. pp. 283–294.Google Scholar
  27. 27.
    Furman, T C. et al. (1987). Recombinant human insulin-like growth factor II expressed in Escherichia coli. Biotechnology, 5, 1047–1051.CrossRefGoogle Scholar
  28. 28.
    Chance, R.E. et al. (1981). The production of human insulin using recombinant DNA technology and a new chain combination procedure. In: Rich, D.H. and Gross, E. (eds.) PEPTIDES: Synthesis-Structure-Function. Proceedings of the Seventh American Peptide Symposium. Pierce Chemical Company, Rockford. pp. 721–728.Google Scholar
  29. 29.
    Blundell, T. et al. (1972). Insulin: the structure in the crystal and its reflection in chemistry and biology. Advances in Protein Chemistry, 26, 279–402.CrossRefGoogle Scholar
  30. 30.
    Baker, E.N. et al. (1988). The structure of 2Zn pig insulin crystals at 1.5 A resolution. Philosophical Transactions Of The Royal Society Of London. B: Biological Sciences, 319 (1195), 369–456.CrossRefGoogle Scholar
  31. 31.
    Mosekilde, E. et al. (1989). Modeling absorption kinetics of subcutaneous injected soluble insulin. Journal of Pharmacokinetics and Biopharmaceutics, 17 (1), 67–87.Google Scholar
  32. 32.
    Chance, R.E. et al. (1998). Discovery and development of insulin lispro. Drugs of Today, 34 (Suppl. C), 1–9.Google Scholar
  33. 33.
    Brems, D.N. et al. (1992). Altering the association properties of insulin by amino acid replacement. Protein Engineering, 5 (6), 527–533.CrossRefGoogle Scholar
  34. 34.
    DiMarchi, R.D. et al. (1992). Synthesis of a fast-acting insulin based on structural homology with insulin-like growth factor I. In: Smith, J A. and Rivier, J.E. (eds.) Peptides. Chemistry and Biology. Proceedings of the Twelfth American Peptide Symposium, ESCOM, Leiden. pp. 26–28.Google Scholar
  35. 35.
    DiMarchi, R.D. et al. (1994). Preparation of an insulin with improved pharmacokinetics relative to human insulin through consideration of structural homology with insulin-like growth factor I. Hormone Research, 41 (Suppl. 2), 93–96.CrossRefGoogle Scholar
  36. 36.
    Long, H.B. et al. (1992). Human insulin analogs with rapid onset and short duration of action. In: Smith, J.A. and Rivier, J.E. (eds.). Peptides. Chemistry and Biology. Proceedings of the Twelfth American Peptide Symposium. ESCOM, Leiden. pp. 88–90.Google Scholar
  37. 37.
    Frank, B.H. et al. (1991). Manipulation of the position of proline in the B-chain produces monomeric insulins. Diabetes, 40 (Suppl. 1), 423A.Google Scholar
  38. 38.
    Chance, RE. et al. (1996). Insulin analogs modified at position 29 of the B chain. United States Patent Number 5,514,646. May 7, 1996.Google Scholar
  39. 39.
    Slicker, L. J. et al. (1997). Modifications in the B10 and B26–30 regions of the B chain of human insulin alter affinity for the human IGF-I receptor more than for the insulin receptor. Diabetologia, 40 (Suppl. 2), S54 - S61.CrossRefGoogle Scholar
  40. 40.
    Shaw, W.N. and Su, K.S.E. (1991). Biological aspects of a new human insulin analog: [Lys(B28), Pro(B29)]-human insulin. Diabetes, 40 (Suppl. 1), 464A.Google Scholar
  41. 41.
    Galloway, J.A. et al. (1991). Human insulin and its modifications. In: Reidenberg, M. M. (ed). The clinical pharmacology of biotechnology products. Elsevier, Amsterdam. pp. 23–34.Google Scholar
  42. 42.
    Su, K.S. et al. (1994). Using dog model for comparing time action of insulins after subcutaneous (s.c.) injection: prediction of rapid onset of a new insulin analog [Lys(B28), Pro(B29)]-human insulin (KP). Pharmaceutical Research, 11(10)(Suppl.), S357.Google Scholar
  43. 43.
    Bakaysa, D.L. et al. (1996). Physicochemical basis for the rapid time-action of LysB28ProB29-insulin: dissociation of a protein-ligand complex. Protein Science, 5 (12), 2521–2531.CrossRefGoogle Scholar
  44. 44.
    Radziuk, J. et al. (1997). Bioavailability and bioeffectiveness of subcutaneous human insulin and two of its analogs-LysB28ProB29-human insulin and AspB10LysB28ProB29human insulin-assessed in a conscious pig model. Diabetes, 46, 548–556.CrossRefGoogle Scholar
  45. 45.
    USAN Council. (1995). New Names. Clinical Pharmacology and Therapeutics, 57, 98.CrossRefGoogle Scholar
  46. 46.
    Hua, Q.-X. et al. (1996). Mapping the functional surface of insulin by design: structure and function of a novel A-chain analogue. Journal of Molecular Biology, 264, 390–403.CrossRefGoogle Scholar
  47. 47.
    Ciszak, E. et al. (1995). Role of C-terminal B-chain residues in insulin assembly: the structure of hexameric LysB28ProB29-human insulin. Structure, 3, 615–622.CrossRefGoogle Scholar
  48. 48.
    Birnbaum, D.T. et al. (1997). Assembly and dissociation of human insulin and LysB28ProB29-insulin hexamers: a comparison study. Pharmaceutical Research, 14 (1), 25–36.CrossRefGoogle Scholar
  49. 49.
    Frank, B.H. et al. (1995). LysB28ProB29-human insulin (insulin lispro): solution properties of a rapid-acting insulin. Diabetologia, 38 (Suppl. 1), A189.Google Scholar
  50. 50.
    Chance, R.E. et al. (1981). Chemical, physical, and biological properties of recombinant human insulin. In: Gueriguian, J L. (ed.). Insulins, Growth Hormone, and Recombinant DNA Technology. Raven Press, New York. pp. 71–86.Google Scholar
  51. 51.
    Chance, R.E. et al. (1981). Chemical, physical, and biologic properties of biosynthetic human insulin. Diabetes Care, 4 (2), 147–154.CrossRefGoogle Scholar
  52. 52.
    Johnson, I.S. (1982). Authenticity and purity of human insulin (recombinant DNA). Diabetes Care, 5 (Suppl. 2), 4–12.Google Scholar
  53. 53.
    Frank, B.H. and Chance, R.E. (1983). Two routes for producing human insulin utilizing recombinant DNA technology. Munch med Wschr, 125 (Suppl. 1), S14 - S20.Google Scholar
  54. 54.
    Frank, B.H. and Chance, R.E. (1986). The preparation and characterization of human insulin of recombinant DNA origin. In: Joyeaux, A., Leygue, G., Morre, M., Roncucci, R. and Schmelck, P.H. (eds.). Therapeutic Agents Produced by Genetic Engineering Quo Vadis? Symposium, Sanofi Group. Toulouse-Lab ège. Sanofi Recherche, Montpellier. pp. 137–146.Google Scholar
  55. 55.
    Prouty, W.F. (1991). Production-scale purification processes. In: Chiu, Y-y. H. and Gueriguian, J.L. (eds.). Drug Biotechnology Regulation. Scientific Basis and Practices. Marcel Dekker, Inc., New York. pp. 221–262.Google Scholar
  56. 56.
    Kroeff, E.P. et al. (1989). Production scale purification of biosynthetic human insulin by reversed-phase high-performance liquid chromatography. Journal of Chromatography, 461, 45–61.CrossRefGoogle Scholar
  57. 57.
    Slieker, L.J. et al. (1994). Insulin and IGF-I analogs: novel approaches to improved insulin pharmacokinetics. In: LeRoith, D. and Raizada, M.K., (eds.). Current Directions in Insulin-Like Growth Factor Research. Plenum Press, New York. pp. 2532.Google Scholar
  58. 58.
    Atkins, L.M. et al. (1987). Recommendations for establishment of reference standards for recombinant-DNA-derived proteins and polypeptides. Journal Association of Official Analytical Chemists, 70 (4), 610–617.Google Scholar
  59. 59.
    Farid, N.A. et al. (1989). Liquid chromatographic control of the identity, purity and “potency” of biomolecules used as drugs. Journal of Pharmaceutical and Biomedical Analysis, 7 (2), 185–188.CrossRefGoogle Scholar
  60. 60.
    Kroeff, E.P. and Chance, R.E. (1982). Applications of high-performance liquid chromatography for analysis of insulins. In: Gueriguian, J.L., Bransome, E.D., Jr. and Outschoorn, A.S. ( Workshop Organizers ) (eds.). Hormone Drugs. Proceedings of the FDA-USP Workshop on Drug and Reference Standards for Insulins, Somatropins, and Thyroid-axis Hormones. United States Pharmacopeia) Convention, Inc., Rockville. pp. 148–162.Google Scholar
  61. 61.
    Weiss, M.A. et al. (1991). Heteronuclear 2D NMR studies of an engineered insulin monomer: assignment and characterization of the receptor-binding surface by selective 2H and 13C labeling with application to protein design. Biochemistry, 30, 7373–7389.CrossRefGoogle Scholar
  62. 62.
    Riggin, A. et al. (1997). A non-isotopic probe-hybridization assay for residual DNA in biopharmaceuticals. Journal of Pharmaceutical and Biomedical Analysis, 16(4), 561572.Google Scholar
  63. 63.
    Slieker, L.J. and Sandell, K. (1991). Modifications in the 28–29 position of the insulin B-chain alter binding to the IGF-I receptor with minimal effect on insulin receptor binding. Diabetes, 40 (Suppl. 1), 168A.Google Scholar
  64. 64.
    Slieker, L.J. et al. (1993). Insulin and IGF-I analogs: novel approaches to improved insulin pharmacokinetics. In: Du, Y-C., Tam, J.P. and Mang, Y-S. (eds.). Peptides-Biology and Chemistry. Proceedings of the 1992 Chinese Peptide Symposium. ESCOM, Leiden. pp. 7–10.Google Scholar
  65. 65.
    Schwartz, G.P. et al. (1987). A superactive insulin [B10-aspartic acid] insulin (human). Proceedings of the National Academy of Sciences of the United States of America, 84, 6408–6411.CrossRefGoogle Scholar
  66. 66.
    Drejer, K. (1992). The bioactivity of insulin analogues from in vitro receptor binding to in vivo glucose uptake. Diabetes/Metabolism Reviews, 8 (3), 259–286.CrossRefGoogle Scholar
  67. 67.
    Dideriksen, L.H. et al. Carcinogenic effect on female rats after 12 months administration of insulin analogue B10 Asp. Diabetes, 41(Suppl. 1 ), 143A.Google Scholar
  68. 68.
    Jorgensen, L.N. et al. (1992). Carcinogenic effect of the human insulin analogue B10 Asp in female rats. Diabetologia, 35 (Suppl. 1), A3.Google Scholar
  69. 69.
    Jorgensen, L.N. and Dideriksen, L.H. (1993). Preclinical studies of rapid-acting insulin analogues. In: Berger, M. and Gries, F.A. (eds.). Frontiers in insulin pharmacology. Thieme Medical Publishers, Inc., New York. pp. 110–117.Google Scholar
  70. 70.
    DeMeyts, P. et al. (1993). Enhanced mitogenic potency of insulin analogues in a cell line devoid of IGF-I receptors correlates with slow dissociation from insulin receptors. Diabetes, 42 (Suppl. 1), 163A.Google Scholar
  71. 71.
    DeMeyts, P. (1994). The structural basis of insulin and insulin-like growth factor-I receptor binding and negative co-operativity, and its relevance to mitogenic versus metabolic signalling. Diabetologia, 37 (Suppl. 2), S135 - S148.CrossRefGoogle Scholar
  72. 72.
    Danielsen, G. et al. (1995). Early signalling events of insulin analogs. European Journal of Endocrinology, 132 (Suppl. 1), 8.CrossRefGoogle Scholar
  73. 73.
    Lundemose, A.G. et al. (1995). Molecular actions of insulin analogues. In: Baba, S., Kaneko, T. (Eds.) Diabetes, 1994. Elsevier Science BV, Amsterdam 469–472.Google Scholar
  74. 74.
    Hansen, B.F. et al. (1996). Sustained signalling from the insulin receptor after stimulation with insulin analogues exhibiting increased mitogenic potency. Biochemical Journal, 315, 271–279.Google Scholar
  75. 75.
    Liu, L. et al. (1997). IGF-I receptor-mediated signalling of the human insulin analogue HOE 901. Diabetologi,a 40 (Suppl. 1), A355.Google Scholar
  76. 76.
    Berti, L. et al. (1998). The long acting human insulin analog HOE 901: characteristics of insulin signalling in comparison to ASP(B10) and regular insulin. Hormone and Metabolic Research, 30, 123–129.CrossRefGoogle Scholar
  77. 77.
    Llewelyn, J. et al. (1998). Preclinical studies on insulin lispro. Drugs of Today, 34 (Suppl. C), 11–21.Google Scholar
  78. 78.
    Drejer, K. et al. (1991). Receptor binding and tyrosine kinase activation by insulin analogues with extreme affmities studied in human hepatoma HepG2 cells. Diabetes, 40, 1488–1495.CrossRefGoogle Scholar
  79. 79.
    Hamel, F.G. et al. (1997). B10-Asp insulin (B10), but not B28-Lys, B29-Pro insulin (LYSPRO), is resistant to metabolism by hepatocytes and insulin degrading enzyme (IDE). Diabetes, 46 (Suppl. 1), 204A.Google Scholar
  80. 80.
    Somwar, R. et al. (1998). Stimulation of glucose and amino acid transport and activation of the insulin signalling pathways by insulin lispro in L6 skeletal muscle cells. Clinical Therapeutics, 20 (1), 125–140.CrossRefGoogle Scholar
  81. 81.
    Slieker, L.J. and Sundell, K.L. (1994). In vitro analysis of Lys(B28), Pro(B29) human insulin (LY275585): comparison to human insulin in terms of insulin and IGF-I receptor binding, glucose uptake into adipocytes and thymidine incorporation into smooth muscle cells. Unpublished report on file Lilly Research Laboratories, Preclinical Pharmacology Report No. 7.Google Scholar
  82. 82.
    Fawcett, J. et al. (1998). Effect of insulin analogs on DNA synthesis in cultured rat liver cells. Diabetes, 47 (Suppl. 1), A410.Google Scholar
  83. 83.
    Lilly Research Laboratories. Data on file.Google Scholar
  84. 84.
    Helton, D.R. et al. (1996). General pharmacology of insulin lispro in animals. Arzneinttel-Forschung/Drug Research, 46 (I), 91–97.Google Scholar
  85. 85.
    Zimmermann, J. (1994). Subchronic and chronic toxicity, and mutagenicity studies conducted with LysPro [Lys(B28), Pro(B29)] human insulin analog, LY275585. Fifteenth International Diabetes Federation Congress (Nov 6–11, Kobe, Japan ). p. 123.Google Scholar
  86. 86.
    Zimmermann, J. (1994). A 12-month chronic toxicity study of LY275585 (human insulin analog) administered subcutaneously to Fischer 344 rats. Diabetes, 43 (Suppl. 1), 166A.Google Scholar
  87. 87.
    Zimmermann, J.L. and Truex, L.L. (1997). 12-month chronic toxicity study of LY275585 (human insulin analog) administered subcutaneously to Fischer 344 rats. International Journal of Toxicology, 16, 639–657.Google Scholar
  88. 88.
    Buelke-Sam, J. et al. (1994). A reproductive and developmental toxicity study in CD rats of LY275585, [Lys(B28), Pro(B29)]-human insulin. Journal of the American College of Toxicology, 13 (4), 247–260.CrossRefGoogle Scholar
  89. 89.
    Zwickl, C.M. et al. (1995). Immunogenicity of biosynthetic human LysPro insulin compared to native-sequence human and purified porcine insulins in rhesus monkeys immunised over a 6-week period. Arzneimittel-Forschung/Drug Research, 45(I), 524528.Google Scholar
  90. 90.
    Howey, D.C. et al. (1994). [Lys(B28), Pro(B29)]-human insulin. A rapidly absorbed analogue of human insulin. Diabetes, 43, 396–402.Google Scholar
  91. 91.
    Howey, D.C. et al. (1995). [Lys(B28), Pro(B29)]-human insulin: effect of injection time on postprandial glycemia. Clinical Pharmacology and Therapeutics 58, 459–469.Google Scholar
  92. 92.
    Heinemann, L. and Woodworth, J. (1998). Pharmacokinetics and glucodynamics of insulin lispro. Drugs of Today, 34 (Suppl. C), 23–36.Google Scholar
  93. 93.
    Heinemann, L. et al. (1996). Prandial glycaemia after a carbohydrate-rich meal in type 1 diabetic patients: using the rapid acting insulin analogue [Lys(B28), Pro(B29)] human insulin. Diabetic Medicine, 13, 625–629.CrossRefGoogle Scholar
  94. 94.
    Anderson, J.H., Jr. and Koivisto, V.A. (1998). Clinical studies on insulin lispro. Drugs of Today, 34 (Suppl. C), 37–50.Google Scholar
  95. 95.
    Anderson, J.H. et al. and the Multicenter Insulin Lispro Study Group. (1997). Reduction of postprandial hyperglycemia and frequency of hypoglycemia in IDDM patients on insulin-analog treatment. Diabetes, 46, 265–270.Google Scholar
  96. 96.
    Anderson, J.H. et al. (1997). Mealtime treatment with insulin analog improves postprandial hyperglycemia and hypoglycemia in patients with non-insulin-dependent diabetes mellitus. Archives of Internal Medicine, 157 (11), 1249–1255.CrossRefGoogle Scholar
  97. 97.
    Anderson, J.H. et al. and the Multicenter Insulin Lispro Study Group.(1997). Improved mealtime treatment of diabetes mellitus using an insulin analogue. Clinical Therapeutics, 19(1), 62–72.Google Scholar
  98. 98.
    Lean, M.E. et al. (1985). Interval between insulin injection and eating in relation to blood glucose control in adult diabetics. British Medical Journa,l 290, 105–108.CrossRefGoogle Scholar
  99. 99.
    American Diabetes Association. (1997). Standards of medical care for patients with diabetes mellitus. Diabetes Care, 20 (Suppl. 1), S5 - S13.Google Scholar
  100. 100.
    Dimitriadis, G.D. and Gerich, J.E. (1983). Importance of timing of preprandial subcutaneous insulin administration in the management of diabetes mellitus. Diabetes Care, 6 (4), 374–377.CrossRefGoogle Scholar
  101. 101.
    Vignati, L. et al. (1997). Efficacy of insulin lispro in combination with NPH human insulin twice per day in patients with insulin-dependent or non-insulin-dependent diabetes mellitus. Clinical Therapeutics, 19 (6), 1408–1421.CrossRefGoogle Scholar
  102. 102.
    Zinman, B. et al. (1997). Insulin Lispro in CSII. Results of a double-blind crossover study. Diabetes, 46, 440–443.Google Scholar
  103. 103.
    Melki, V. et al. (1998). Improvement of HbAI0 and blood glucose stability in IDDM patients treated with lispro insulin analog in external pumps. Diabetes Care, 21 (6), 977–982.CrossRefGoogle Scholar
  104. 104.
    Pfútzner, A., Reimer, R. and The German Humalog CSII Study Group. (1997). CSII therapy with insulin pumps using insulin lispro. Diabetes, 46 (Suppl. 1), 34A.Google Scholar
  105. 105.
    Schmauss, S. et al. (1998). Human insulin analogue [LYS(B28), PRO(B29)]: the ideal pump insulin? Diabetic Medicine, 15 (3), 247–249.CrossRefGoogle Scholar
  106. 106.
    Campbell, R.K. et al. (1998). Impact on clinical status and quality of life of switching from regular insulin to insulin lispro among patients using insulin pumps. The Diabetes Educator, 24 (1), 95–99.CrossRefGoogle Scholar
  107. 107.
    Schernthaner, G. et al. (1998). Postprandial insulin lispro: a new therapeutic option for type-1 diabetic patients. Diabetes Care, 21 (4), 570–573.CrossRefGoogle Scholar
  108. 108.
    Holcombe, J.H. et al. (1998). Comparative study of insulin lispro and regular insulin in prepubertal children with type 1 diabetes. Diabetes, 47 (Suppl. 1), A96.Google Scholar
  109. 109.
    Rutledge, K.S. et al. (1997). Effectiveness of postprandial Humalog in toddlers with diabetes. Pediatrics, 100 (6), 968–972.CrossRefGoogle Scholar
  110. 110.
    Holcombe, J. et al. (1997). Insulin lispro (LP) results in less nocturnal hypoglycemia compared with regular human insulin in adolescents with type 1 diabetes. Diabetes, 46 (Suppl. 1), 103A.Google Scholar
  111. 111.
    Holcombe, J. et al. (1997). Patient preference for insulin lispro versus Humulin R in adolescents with type 1 diabetes. Diabetologia, 40 (Suppl. 1), A343.Google Scholar
  112. 112.
    Holcombe, J. et al. (1997). Comparative study of insulin lispro and regular insulin in 481 adolescents with type 1 diabetes. Diabetologia, 40 (Suppl. 1), A344.Google Scholar
  113. 113.
    Rami, B. and Schober, E. (1997). Postprandial glycaemia after regular and lispro insulin in children and adolescents with diabetes. European Journal of Pediatrics, 156, 838–840.CrossRefGoogle Scholar
  114. 114.
    Kotsanos, J.G. et al. (1997). Health-related quality-of-life results from multinational clinical trials of insulin lispro. Assessing benefits of a new diabetes therapy. Diabetes Care, 20 (6), 948–958.CrossRefGoogle Scholar
  115. 115.
    Desmet, M. et al. (1994). [Lys(B28),Pro(B29)] human insulin (LysPro): patients treated with LysPro versus human regular insulin: quality of life assessment (QOL). Diabetes, 43(Suppl. 1 ), 167A.Google Scholar
  116. 116.
    Anderson, J.H., Jr. et al. (1996). Insulin analogues: designer insulins with improved characteristics for better patient care. Diabetes News, 17, 5–7.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Ronald E. Chance
    • 1
  • N. Bradly Glazer
    • 1
  • Kathleen L. Wishner
    • 1
  1. 1.Eli Lilly and CompanyIndianapolisUSA

Personalised recommendations