Phylogeny of decapods: moving towards a consensus

  • Frederick R. Schram
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 154)


Although the recognition of four broad groups within Decapoda — natantians, macrurans, anomurans and brachyurans — has long been a staple of textbooks and even the primary taxonomic literature, a precise resolution of phylogenetic relationships within the order has proved more difficult. Indeed, there have been as many schemes of decapod taxonomy and phylogeny as there were experts who wished to offer an opinion. In this decade, utilization of explicit cladistic methods of analysis and the application of molecular techniques have produced a series of clear hypotheses concerning the relationships within many of the groups of Decapoda. It is apparent that earlier conflicts of opinion can be related in part to the implicit problems of dealing with paraphyletic groups near the base of the tree that are too broadly defined by only general or plesiomorphic features. Comprehensive morphological analyses of both fossil and living forms, with attention being paid to defining synapomorphies, can lead to resolution of old controversies. Molecular techniques hold great promise towards providing further resolution, but currently suffer from insufficiencies of sampling. Nevertheless, where once there was chaos and vexation, there is now some enlightenment. The situation can only improve, but the broad outlines of decapod deep history are already emerging.

Key words

cladistic analysis Decapoda developmental genes fossils morphology phylogeny sequence data 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abele, L. G., 1991. Comparison of morphological and molecular phylogeny of the Decapoda. Mem. Qld. Mus. 31: 101–108.Google Scholar
  2. Abele, L. G. and B. E. Felgenhauer, 1986. Phylogenetic and phenetic relationships among the lower Decapoda. J. crust. Biol. 6: 385400.Google Scholar
  3. Albrecht, H., 1983. Die Protastacidae n. fam., fossile Vorfahren der Flußkredse? N. Jb. geol. paläont. Mh. 1983: 5–15.Google Scholar
  4. Averof, M. and N. Patel, 1997. Crustacean appendage evolution associated with changes in Hox gene expression. Nature 388: 682–686.PubMedCrossRefGoogle Scholar
  5. Borradaile, L. A., 1907. On the classification of the Decapoda. Ann. Mag. nat. Hist. (7)19: 457–486.Google Scholar
  6. Burkenroad, M. D., 1963. The evolution of the Eucarida ( Crustacea: Eumalacostraca) in relation to the fossil record. Tulane Stud. Geol. 2: 3–16.Google Scholar
  7. Burkenroad, M. D., 1981. The higher taxonomy and evolution of Decapoda (Crustacea). Trans. San Diego Soc. nat. Hist. 19: 251268.Google Scholar
  8. Christoffersen, M. L., 1987. Phylogenetic relationships of hypolytid genera, with an assignment of new families for the Crangoidea and Alpheoidea (Crustacea, Decapoda, Caridea). Cladistics 3: 348–362.Google Scholar
  9. Christoffersen, M. L., 1988. Genealogy and phylogenetic classification of the world Crangonidae ( Crustacea, Caridea), with a new species and new records for the south western Atlantic. Revta. nordest. Biol. 6: 43–59.Google Scholar
  10. Christoffersen, M. L., 1989. Phylogeny and classification of the Pandaloidea ( Crustacea, Caridea). Cladistics 5: 259–274.Google Scholar
  11. Christoffersen, M. L., 1990. A new superfamily classification of the Caridea ( Crustacea: Pleocyemata) based on phylogenetic pattern. Zeit. zool. Syst. Evolut.-forsch. 28: 94–106.Google Scholar
  12. Laurent, M., 1979. Vers une nouvelle classification des Crustacés Décapodes Reptantia. Bull. Off. natnl. Pêches Tunis. 3: 15–31.Google Scholar
  13. Laurent, M., 1980a. Sur la classification et la phylogénie des Crustacés Décapodes Brachyoures. I. Podotremata Guinot, 1977, et Eubrachyura sect. nov. C.R. Acad. Sc. Paris 290: 12651268.Google Scholar
  14. Laurent, M., 1980b. Sur la classification et la phylogénie des Crustacés Décapodes Brachyoures. II. Heterotremata et Thoracotremata Guinot, 1977. C.R. Acad. Sci. Paris 290: 1317–1320.Google Scholar
  15. Eldredge, N., 1971. The allopatric model and phylogeny of Paleozoic invertebrates. Evolution 25: 156–167.CrossRefGoogle Scholar
  16. Eldredge, N., 1972. Systematics and evolution of Phacops rang (Green, 1832) and Phacops iowensis Delo, 1935 (Trilobita) from the Middle Devonian of North America. Bull. am. Mus. nat. Hist. 147: 45–114.Google Scholar
  17. Eldredge. N., 1973. Systematics of Lower and lower Middle Devonian species of the trilobite Phacops Emmerich in North America. Bull. am. Mus. nat. Hist. 151: 285–338.Google Scholar
  18. Eldredge. N., 1974. Stability, diversity, and speciation in Paleozoic epeiric seas. J. Paleo. 48: 540–548.Google Scholar
  19. Eldredge, N. and M. Eldredge, 1972. A trilobite odyssey. Nat. Hist. 81 (10): 52–59.Google Scholar
  20. Felgenhauer, B. E., and L. G. Abele, 1983. Phylogenetic relationships among shrimp-like decapods. Crust. Issues 1: 291–31 I.Google Scholar
  21. Forest, J. and M. De Saint Laurent, 1981. La morphologic externe de Neoglyphea inopinata, espéce actuelle de Crustacé Décapode Glyphéide. Mém. ORSTOM 91: 51–84.Google Scholar
  22. Glaessner, M. F., 1969. Decapoda. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part R, Arthropoda 4(2). Geol. Soc. Am. and Univ. Kansas Press, Lawrence: R400 - R533.Google Scholar
  23. Guinot, D., 1978. Principes d’une classification évolutive des Crustacés Décapodes Brachyoures. Bull. biol. Fr. Belg. 112: 211–292.Google Scholar
  24. Guinot, D., 1979. Morphologie et phylogenésc des Brachyoures. Mém Mus. natl. Hist. Nat. (A)112: 1–354.Google Scholar
  25. Guinot, D., B. G. M. Jamieson and B. Richer de Forges, 1994. Relationship of Homolidae and Dromiidae: evidence from spermatozoan ultrastructure ( Crustacea: Decapoda). Acta Zool. 75: 255–267.Google Scholar
  26. Guinot, D., B. G. M. Jamieson, B. Richer De Forges and C. C. Tudge, 1998. Comparative spermatozoa) ultrastructure of the three dromiacean families exemplified by Homalodromia kai (Homolodromiidae), Sphaerodromia lamellota (Dromiidae) and Dynomene tanensis (Dynomenidae) ( Podotremata: Brachyura). J. crust. Biol. 18: 78–94.Google Scholar
  27. Hannibal, J. and R. M. Feldmann, 1985. Newberry’s lobster: the earliest decapod. Explorer 27 (1): 10–12.Google Scholar
  28. Hasiotis. S. T., 1999. The origin and evolution of freshwater crayfish based on crayfish body and trace fossils. Freshwat. Crayfish 12: 49–70.Google Scholar
  29. Holdich, D., 1999. The negative effect of established crayfish introductions. Crust. Issues 11: 31–47.Google Scholar
  30. Jenner, R. A., 1999. Metazoan phylogeny as a tool in evolutionary biology: current problems and discrepancies in application. Belg. J. Zool. 129: 245–262.Google Scholar
  31. Jenner, R. A. and F. R. Schram, 1999. The grand ganse of metazoan phylogeny: rules and strategies. Biol. Rev. 74: 121–142.Google Scholar
  32. Kim, W. and L. G. Abele, 1990. Molecular phylogeny of selected decapod crustaceans based on I8S rRNA nucleotide sequences. J. crust. Biol. 10: 1–13.Google Scholar
  33. Kowalewski, M., T. M. Demko, S. T. Hasiotis and D. Newell, 1998. Quantitative ichnology of Triassic crayfish burrows (Camborygma eumekenomos): ichnofossils as linkages to population ecology. Ichnos 6: 5–21.Google Scholar
  34. Martin, J. W. and L. G. Abele, 1986. Phylogenetic relationships of the genus Aegla (Decapoda: Anomura: Aeglidae), with comments on anomuran phylogeny. J. crust. Biol. 6: 576–616.Google Scholar
  35. McLaughlin, P. A., 1983a. A review of the phylogenetic position of the Lomidae (Crustacea: Decapoda: Anomala). J. crust. Biol. 3: 431–437.Google Scholar
  36. McLaughlin, P. A., 1983b. Hermit crabs–are they really polyphyletic ? J. crust. Biol. 3: 608–621.CrossRefGoogle Scholar
  37. McLaughlin, P. A. and L. B. Holthuis, 1985. Anomura versus Anomala. Crustaceana 49: 204–209.Google Scholar
  38. McLaughlin, P. A. and R. Lemaitre, 1997. Carcinization in the Anomura - fact or fiction? I. Evidence from adult morphology. Contrib. Zool. 67: 79–123.Google Scholar
  39. Rasnitsyn, A. P., 1996. Conceptual issues in phylogeny, taxonomy, and nomenclature. Contrib. Zool. 66: 3–41.Google Scholar
  40. Rice, A. L., 1980 Crab zoél morphology and its bearing on the clas- sification of Brachyura. Trans. zool. Soc. Land. 35: 271–4242.Google Scholar
  41. Rice, A. L., 1983. Zoël evidence for brachyuran phylogeny. Crust. Issues I: 313–329.Google Scholar
  42. Richter, S. and G. Scholtz, 1994. Morphological evidence for a hermit crab ancestry of lithodids (Crustacea: Decapoda: Anomala: Paguroidea). Zool. Anz. 233: 187–210.Google Scholar
  43. Scholtz, G., 1993. Teloblasts in decapod embryos: an embryonic character reveals the monophyletic origin of freshwater crayfishes ( Crustacea, Decapoda). Zool. Anz. 230: 45–54.Google Scholar
  44. Scholtz, G.. I995a. Ursprung und Evolution der Flußkrebse (Crustacea, Astacida). Sber. Ges. Naturf. Freunde Berlin (N.F.) 34: 93–115.Google Scholar
  45. Scholtz, G., 1995b. Head segmentation in Crustacea–an immunocytochemical study. Zoology 98: 104–114.Google Scholar
  46. Scholtz, G., 1995e. Expression of the engrailed gene reveals nine putative segment-anlagen in the embryonic pleon of the freshwater crayfish Cherax destructor ( Crustacea, Malacostraca. Decapoda). Biol. Bull. 188: 157–165.Google Scholar
  47. Scholtz, G. and W. Dohle, 1996. Cell lineage and cell fate in crustacean embryos - a comparative approach. Int. J. dev. Biol. 40: 211–220.Google Scholar
  48. Scholtz, G., 1998. Von Zellen und Kontinenten - de Evolution der Flußkrebse ( Decapoda, Astacida). Stapfia 58: 205–212.Google Scholar
  49. Scholtz, G., 1999. Freshwater crayfish evolution. Freshwat. Crayfish 12: 37–48.Google Scholar
  50. Scholtz, G. and S. Richter, 1995. Phylogenetic systematics of the reptantian Decapoda ( Crustacea: Malacostraca). Zool. J. linn. Soc.. Land. 113: 289–328.Google Scholar
  51. Schram, F. R., 198la. On the classification of the Eumalacostraca. Jour. crust. Biol. I: 1–10.Google Scholar
  52. Schram, F. R., 1981b. Late Paleozoic crustacean communities. J. Paleo. 55: 126–137.Google Scholar
  53. Schram, F. R., 1983. Method and madness in phylogeny. Crust. Issues I: 331–350.Google Scholar
  54. Schram, F. R., 1986. Crustacea. Oxford Univ. Press, New York: 606 pp.Google Scholar
  55. Schram, F. R., R. M. Feldmann and M. J. Copeland, 1978. The Late Devonian Palaeopalaemonidae Brooks. 1962, and the earliest decapod crustaceans. J. Paleo. 52: 1375–1387.Google Scholar
  56. Schram, F. R. and C. H. J. Hof, 1998. Fossil taxa and the relationships of major crustacean groups. In Edgecomb. G. (ed.), Arthropod Fossils and Phylogeny. Columbia Univ. Press. New York: 273–302.Google Scholar
  57. Schram, F. R. and R. A. Jenner, 2001. The origin of Hexapoda: the crustacean perspective. In Deuve, T. (ed.), The Origin of Hexapoda. Annales Soc. entomol. France 37(1)Google Scholar
  58. Schram, F. R. and R. H. Mapes, 1984. Imocaris tuberculata, n. gen.. n. sp. (Crustacea: Decapoda) from the Upper Mississippian Imo Formation, Arkansas. Trans. S. D. Soc. nat. Hist. 20: 165–168.Google Scholar
  59. Schuhart, C. D., J. E. Neigle and D. L. Felder, 2000. Use of the mitochondrial 16S rDNA gene for phylogenetic and population studies of Crustacea. Crust. Issues 121: 817–830.Google Scholar
  60. Scotese, C. R., 1997. Paleogeographic Atlas. PaleoMap Progress Report 90–0497, Dept. Geol., Univ. Texas, Arlington. Texas: I37.Google Scholar
  61. Spears, T. and L. G. Abele, 1997. Crustacean phylogeny inferred from 18S rDNA. In Fortey, R. A. and R. H. Thomas (eds), Arthropod Relationships. Chapman and Hall, London: 169–187.Google Scholar
  62. Spears, T., L. G. Abele and W. Kim, 1992. The monophyly of brachyuran crabs: a phylogenetic study based on 18S rRNA. Syst. Biol. 41: 446–461.Google Scholar
  63. Taylor, R. S., F. R. Schram and Y-B. Shen, 1999. A new crayfish Family ( Decapoda: Astacida) from the Upper Jurassic of China, with a reinterpretation of other Chinese crayfish taxa. Palaeontol. Res. 3: 121–136.Google Scholar
  64. Tshudy, D. and L. E. Babcock, 1997. Morphology-based phylogenetic analysis of the clawed lobsters (Family Nephropidae and the new family Chilenophoberidae). J. crust. Biol. 17: 253–263.Google Scholar
  65. Tudge, C. C., 1997. Phylogeny of the Anomura (Decapoda: Crustacea): spermatozoa and spermatophore morphological evidence. Contrib. Zool. 67: 125–141.Google Scholar
  66. Von Sternberg, R., N. Cumberlidge and G. Rodriguez, 1997. On the marine sister groups of the freshwater crabs (Crustacea: Decapoda: Brachyura). J. zool. Syst. evol. Res. 37: 19–38.Google Scholar
  67. Wilkinson, M., 1995. A comparison of two methods of character construction. Cladistics 9: 1–39.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Frederick R. Schram
    • 1
  1. 1.Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations