Logical Consequence: A Turn in Style

  • Kosta Došen
Part of the Synthese Library book series (SYLI, volume 259)


This talk summarizes some of the things that contemporary logic and, in particular, proof theory stemming from Gentzen have to say about the notion of consequence. It starts from very elementary facts, the understanding of which doesn’t require any technical knowledge, to reach the more specialized areas of substructural logics and categorial proof theory. There, one may turn to a style of proof-theoretical investigation whose goal is not just the elimination of cut. Some tentative philosophical suggestions are drawn from this summary.


Logical Consequence Classical Logic Intuitionistic Logic Linear Logic Proof Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bernays, P. [1965] Betrachtung zum Sequenzen-Kalkul, in A.-T. Tymieniecka ed., Contributions to Logic and Methodology in Honor of J.M. Bocheński, North-Holland, Amsterdam, pp. 1–44.Google Scholar
  2. Boričić, B. [1985] On sequence-conclusion natural deduction, Journal of Philosophical Logic vol. 14, pp. 359–377.CrossRefGoogle Scholar
  3. Carnap, R. [1943] Formalization of Logic, Harvard University Press, Cambridge, Mass.Google Scholar
  4. Carroll, L. [1895] What the tortoise said to Achilles, Mind (N.S.) vol. 4, pp. 278–280.CrossRefGoogle Scholar
  5. Ćelluci, C. [1992] Existential instantiation and normalization in sequent natural deduction, Annals of Pure and Applied Logic vol. 58, pp. 111–148.CrossRefGoogle Scholar
  6. Čubrić, D. [1994] Interpolation for bicartesian closed categories, Archive for Mathematical Logic vol. 33, pp. 291–319.CrossRefGoogle Scholar
  7. Curry, H.B., and Feys, R. [1958] Combinatory Logic, Vol. I, North-Holland, Amsterdam.Google Scholar
  8. Di Cosmo, R.[1995] Isomorphisms of Types: From λ-Calculus to Information Retrieval and Language Design, Birkhäuser, Boston.CrossRefGoogle Scholar
  9. Došen, K. [1985] Sequent systems for modal logic, The Journal of Symbolic Logic vol. 50, pp. 149–168.CrossRefGoogle Scholar
  10. Došen, K. [1988] Sequent systems and groupoid models, I, Studia Logica vol. 47, pp. 353–385 (Addenda and corrigenda, Studia Logica vol. 49, 1990, p. 614).CrossRefGoogle Scholar
  11. Došen, K. [1989] Logical constants as punctuation marks, Notre Dame Journal of Formal Logic vol. 30, pp. 362–381 (slightly amended version in: D.M. Gabbay ed., What is a Logical System?, Oxford University Press, Oxford, 1994, pp. 273–296) .CrossRefGoogle Scholar
  12. Došen, K. [1992] Modal logic as metalogic, Journal of Logic, Language and Information vol. 1, pp. 173–201.CrossRefGoogle Scholar
  13. Došen, K. [1994] On passing from singular to plural consequences, in: E. Orlowska ed., Essays in Memory of Helena Rasiowa, Kluwer, Dordrecht (to appear). [1996] Deductive completeness, The Bulletin of Symbolic Logic (to appear).Google Scholar
  14. Došen, K., and Petrić, Z. [1993] Modal functional completeness, in: H. Wansing ed., Proof Theory of Modal Logic, Kluwer, Dordrecht (to appear).Google Scholar
  15. Došen, K., and Petrić, Z. [1994] Cartesian isomorphisms are symmetric monoidal: A justification of linear logic (manuscript) .Google Scholar
  16. Došen, K., and Petrić, Z. [1995] Isomorphic objects in symmetric monoidal closed categories, Mathematical Structures in Computer Science (to appear).Google Scholar
  17. Došen, K., and Schroeder-Heister, P. [1985] Conservativeness and uniqueness, Theoria vol. 51, pp. 159–173 (Errata, Theoria vol. 52, 1986, p. 127).Google Scholar
  18. Došen, K., and Schroeder-Heister, P. [1988] Uniqueness, definability and interpolation, The Journal of Symbolic Logic vol. 53, pp. 554–570.CrossRefGoogle Scholar
  19. Došen, K., and Schroeder-Heister, P., eds [1993] Substructural Logics, Oxford University Press, Oxford.Google Scholar
  20. Dummett, M.A.E. [1975] The philosophical basis of intuitionistic logic, in: H.E. Rose and J.C. Shepherdson eds, Logic Colloquium ’73, North-Holland, Amsterdam, pp. 5–40.Google Scholar
  21. Fitting, M. [1983] Proof Methods for Modal and Intuitionistic Logics, Reidel, Dordrecht.CrossRefGoogle Scholar
  22. Gentzen, G. [1935] Untersuchungen über das logische Schließen, Mathematische Zeitschrift vol. 39, pp. 176–210, 405–431 (English translation in The Collected Papers of Gerhard Gentzen, M.E. Szabo ed., North-Holland, Amsterdam, 1969).CrossRefGoogle Scholar
  23. Girard, J.-Y. [1987] Proof Theory and Logical Complexity, Vol. I, Bibliopolis, Naples.Google Scholar
  24. Girard, J.-Y., Lafont, Y., and Taylor, P. [1989] Proofs and Types, Cambridge University Press, Cambridge.Google Scholar
  25. Hösli, B., and Jäger, G. [1994] About some symmetries of negation, The Journal of Symbolic Logic vol. 59, pp. 473–485.CrossRefGoogle Scholar
  26. Kelly, G.M., and MacLane, S. [1971] Coherence in closed categories, Journal of Pure and Applied Algebra vol. 1, pp. 97–140.CrossRefGoogle Scholar
  27. Kneale, W. [1956] The province of logic, in: H.D. Lewis ed., Contemporary British Philosophy, Allen and Unwin, London, pp. 237–261.Google Scholar
  28. Lambek, J. [1974] Functional completeness of cartesian categories, Annals of Mathematical Logic vol. 6, pp. 259–292.CrossRefGoogle Scholar
  29. Lambek, J. [1989] Multicategories revisited, in: J.W. Gray and A. Scedrov eds, Categories in Computer Science and Logic, American Mathematical Society, Providence, pp. 217–239.CrossRefGoogle Scholar
  30. Lambek, J. [1993] Logic without structural rules (Another look at cut elimination), in [Došen & Schroeder-Heister 1993], pp. 179–206.Google Scholar
  31. Lambek, J., and Scott, P.J. [1986] Introduction to Higher-Order Categorical Logic, Cambridge University Press, Cambridge.Google Scholar
  32. Lawvere, F.W. [1969] Adjointness in foundations, Dialectica vol. 23, pp. 281–296.CrossRefGoogle Scholar
  33. MacLane, S. [1971] Categories for the Working Mathematician, Springer, Berlin.Google Scholar
  34. Mints, G. [1992] Lewis’ systems and system T (1965–1973), in Selected Papers in Proof Theory, Bibliopolis, Naples, pp. 221–294 (English translation, with additions, of a paper published in Russian as an appendix to the Russian translation of R. Feys, Modal Logic, Nauka, Moscow, 1974, pp. 422–509).Google Scholar
  35. Pottinger, G. [1977] Normalization as a homomorphic image of cut elimination, Annals of Mathematical Logic vol. 12, pp. 323–357.CrossRefGoogle Scholar
  36. Prawitz, D. [1965] Natural Deduction: A Proof-Theoretical Study, Almqvist & Wiksell, Stockholm.Google Scholar
  37. Prawitz, D. [1971] Ideas and results in proof theory, in: J.E. Fenstad ed., Proceedings of the Second Scandinavian Logic Symposium, North-Holland, Amsterdam, pp. 235–307.CrossRefGoogle Scholar
  38. Quine, W.V.O. [1951] Two dogmas of empiricism, Philosophical Review vol. 60, pp. 20–43.CrossRefGoogle Scholar
  39. Scott, D.S. [1971] On engendering an illusion of understanding, The Journal of Philosophy vol. 68, pp. 787–807.CrossRefGoogle Scholar
  40. Scott, D.S. [1974] Completeness and axiomatizability in many-valued logic, in: L. Henkin et al. eds, Proceedings of the Tarski Symposium, American Mathematical Society, Providence, pp. 411–435.CrossRefGoogle Scholar
  41. Shoesmith, D.J., and Smiley, T.J. [1978] Multiple-Conclusion Logic, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  42. Smullyan, R.M. [1968] Analytic cut, The Journal of Symbolic Logic vol. 33, pp. 560–564.CrossRefGoogle Scholar
  43. Soloviev, S.V. [1981] The category of finite sets and cartesian closed categories (in Russian), Zapiski nauchnykh seminarov LOMI vol. 105, pp. 174–194 (English translation in Journal of Soviet Mathematics vol. 22, 1983, pp. 1387–1400).Google Scholar
  44. Soloviev, S.V. [1993] A complete axiom system for isomorphism of types in closed categories, in: A. Voronkov ed., Logic Programming and Automated Reasoning, Lecture Notes in Artificial Intelligence no 698, Springer, Berlin, pp. 360–371.CrossRefGoogle Scholar
  45. Stenlund, S. [1972] Combinators, Lambda Terms and Proof Theory, Reidel, Dordrecht.CrossRefGoogle Scholar
  46. Szabo, M.E. [1978] Algebra of Proofs, North-Holland, Amsterdam.Google Scholar
  47. Takano, M. [1992] Subformula property as a substitute for cut elimination in modal propositional logics, Mathematica Japonica vol. 37, pp. 1129–1145.Google Scholar
  48. Tarski, A. [1930] Über einige fundamentale Begriffe der Metamathematik, Comptes Rendus des Séances de la Société des Sciences et des Lettres de Varsovie vol. 23, pp. 22–29 (English translation in [Tarski 1956]) .Google Scholar
  49. Tarski, A. [1930a] Fundamentale Begriffe der Methodologie der deduktiven Wissenschaften, I, Monatshefte für Mathematik und Physik vol. 37, pp. 361–404 (English translation in [Tarski 1956]) .Google Scholar
  50. Tarski, A. [1936] On the concept of logical consequence (in Polish), PrzeglądFilozoficzny vol. 39, pp. 58–68 (English translation in [Tarski 1956]).Google Scholar
  51. Tarski, A. [1956] Logic, Semantics, Metamathematics: Papers from 1923 to 1938, J.H. Woodger ed., Oxford University Press, Oxford (second edition, J. Corcoran ed., Hackett, Indianapolis, 1983).Google Scholar
  52. Wójcicki, R. [1988] Theory of Logical Calculi: Basic Theory of Consequence Operations, Kluwer, Dordrecht.CrossRefGoogle Scholar
  53. Zucker, J. [1974] The correspondence between cut elimination and normalization, Annals of Mathematical Logic vol. 7, pp. 1–156.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Kosta Došen
    • 1
    • 2
  1. 1.Mathematical InstituteBelgradeSerbia
  2. 2.IRITUniversity of Toulouse IIIFrance

Personalised recommendations