Nonsymmetric Distances and Their Associated Topologies: About the Origins of Basic Ideas in the Area of Asymmetric Topology

  • Hans-Peter A. Künzi
Part of the History of Topology book series (HIPO, volume 3)

Abstract

We begin with some remarks explaining the structure of this article. After some introductory statements in the following paragraphs, we summarize the historic development of what is now often called “Nonsymmetric or Asymmetric Topology” in Section 2. In the following, more specific sections we discuss the historic development of some of the main ideas of the area in greater detail. The list of sections and keywords given above should help the specialist to find his way through the various sections.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aarts, J.M. and Mrsevié, M., Pairwise complete regularity as a separation axiom, J. Austral. Math. Soc. (Ser. A) 48 (1990), 235–245MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Aarts, J.M. and Mrsevié, M., A bitopological view on cocompact extensions, Topology Appl. 42 (1991), 1–16MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Albert, G.E., A note on quasi-metric spaces, Bull. Amer. Math. Soc. 47 (1941), 479–482MathSciNetCrossRefGoogle Scholar
  4. [4]
    Alegre, C., Ferrer, J. and Gregori, V., Quasi-uniform structures in linear lattices, Rocky Mountain J. Math. 23 (1993), 877–884MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Alegre, C., Ferrer, J. and Gregori, V., Quasi-uniformities on real vector spaces, Indian J. Pure Appl. Math. 28 (1997), 929–937MathSciNetMATHGoogle Scholar
  6. [6]
    Alegre, C., Ferrer, J. and Gregori, V., On a class of real normed lattices, Czechoslovak Math. J. 48(123) (1998), 785–792MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Alegre, C., Ferrer, J. and Gregori, V., On the Hahn-Banach theorem in certain linear quasi-uniform structures, Acta Math. Hung. 82 (1999), 325–330MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Alemany, E. and Romaguera, S., On half-completion and bicompletion of quasi-metric spaces, Comment. Math. Univ. Carol. 37 (1996), 749–756MathSciNetMATHGoogle Scholar
  9. [9]
    Alemany, E. and Romaguera, S., On right K-sequentially complete quasi-metric spaces, Acta Math. Hung. 75 (1997), 267–278Google Scholar
  10. [10]
    Allam, A A, El-Saady, K. and Hussein, S.A., Fuzzy syntopogenous structures and order, Fuzzy Sets Syst. 63 (1994), 91–98MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    Allam, A.A., El-Saady, K. and Mashhour, A.S., Fuzzy uniform structures and order, J. Fuzzy Math. 2 (1994), 57–67MathSciNetMATHGoogle Scholar
  12. [12]
    Aló, R.A. and Deeba, E.Y., A note on uniformities of a BCK-algebra, Math. Japonica 30 (1985), 237–240MATHGoogle Scholar
  13. [13]
    Andrikopoulos, A. and Stabakis, J., On Nachbin’s problem concerning uniformizable ordered spaces, Acta Math. Inform. Univ. Ostray. 5 (1997), 65–70MathSciNetMATHGoogle Scholar
  14. [14]
    Andrikopoulos, A. and Stabakis, J. The coregular property on y-spaces Czechoslovak Math. J. 49(124) (1999), 431–442Google Scholar
  15. [15]
    Anton, H. and Pervin, W.J., Separation axioms and metric-like functions Pacific J. Math. 65 (1976), 299–306Google Scholar
  16. [16]
    Antonino, J.A. and Romaguera, S., Equinormal metrics and upper semi-continuity, Math. Japonica 36 (1991) 147–151Google Scholar
  17. [17]
    Antonino, J.A. and Romaguera, S.On Lebesgue quasi-metrizability Boll. U.M.I. A (7) 7 (1993), 59–66Google Scholar
  18. [18]
    Antonino, J.A. and Romaguera, S.On convergence complete strong quasi-metrics Acta Math. Hung. 64 (1994), 65–73Google Scholar
  19. [19]
    Arenas, F.G., Pseudo-distance dependent dimensions Publ. Math. Debrecen 53 (1998), 1–10Google Scholar
  20. [20]
    Arenas, F.G. and Romaguera, S., Dimension of quasi-metrizable bitopological spaces, Questions Answers Gen. Topology 14 (1996), 131–138MathSciNetMATHGoogle Scholar
  21. [21]
    Arenas, F.G. and Sanchez-Granero, M.A., A characterization of nonarchimedeanly quasi-metrizable spaces, Rend. Istit. Univ. Trieste 30 Suppl. (1999), 21–30Google Scholar
  22. [22]
    Aumann, G., Katastrophentheorie auf Verbänden Sitz. ber. Bayer. Akad. Wiss. Math.-nat. (1977), 1–11Google Scholar
  23. [23]
    Baekeland, R. and Lowen, R.., Measures of Lindelöf and separability in approach spaces, Internat. J. Math. Math. Sci. 17 (1994), 597–606MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    Baekeland, R. and Lowen, R., Measures of compactness in approach spaces Comment. Math. Univ. Carol. 36 (1995), 327–345Google Scholar
  25. [25]
    Baisnab, A.P. and Jas, M., Positive definiteness in quasi-proximity spaces and fixed point theorems Bull. Calcutta Math. Soc. 80 (1988), 153–160Google Scholar
  26. [26]
    Balder, M.Y. and El-Saady, K., Fuzzy proximity ordered spaces Fuzzy Sets Syst. 104 (1999), 341–350Google Scholar
  27. [27]
    Balaguer, B. ompressed and Cauchy filters Ann. Univ. Sci. Budapest. 38 (1995), 153–160Google Scholar
  28. [28]
    Bales, J.W. Resentable and strongly locally homogeneous spaces and strongly n-homogeneous spaces Houston J. Math. 2 (1976), 315–327Google Scholar
  29. [29]
    Balogh, Z. and Rudin, M.E., Monotone normality Topology Appl. 47 (1992), 115–127Google Scholar
  30. [30]
    Balzanat, M., Sobre la metrización de los espacios casi métricos Gaz. Mat. Lisboa 12 (1951), 91–94Google Scholar
  31. [31]
    Banaschewski, B. and Brümmer, G.C.L., Stably continuous frames Math. Proc. Cambridge Phil. Soc. 104 (1988), 7–19Google Scholar
  32. [32]
    Banaschewski, B. and Brümmer, G.C.L., Strong zero-dimensionality of biframes and bispaces, Quaestiones Math. 13 (1990), 273–290MathSciNetMATHCrossRefGoogle Scholar
  33. [33]
    Banaschewski, B., Brümmer, G.C.L. and Hardie, K.A., Biframes and bispaces Quaestiones Math. 6 (1983), 13–25Google Scholar
  34. [34]
    Barnhill, C. and Fletcher, P., Topological spaces with a unique compatible quasi-uniform structure Arch. Math. (Basel) 21 (1970), 206–209Google Scholar
  35. [35]
    Bayoumi, F.Stratified fuzzy uniformities J. Fuzzy Math. 6 (1998), 339–349Google Scholar
  36. [36]
    Bennett, H.R., Quasi-metrizability and the y-space property in certain generalized ordered spaces, Topology Proc. 4 (1979), 1–12MathSciNetGoogle Scholar
  37. [37]
    Bentley, H.L., Herrlich, H. and Hunsaker, W.N., A Baire category theorem for quasi-metric spaces, Indian J. Math. 37 (1995), 27–30MathSciNetMATHGoogle Scholar
  38. [38]
    Bentley, H.L., Herrlich, H. and Husek, M., The historical development of uniform, proximal, and nearness concepts in topology, in Handbook of the History of General Topology, C.E. Aull and R. Lowen (eds.), vol. 2, Dordrecht, Kluwer, 1998, 577–629Google Scholar
  39. [39]
    Bentley, H.L. and Hunsaker, W.N., Cauchy sequences in quasi-uniform spaces: categorical aspects, Lecture Notes Computer Science, vol. 393, Springer, Berlin (1989), 278–285Google Scholar
  40. [40]
    Berthiaume, G., On quasi-uniformities in hyperspaces, Proc. Amer. Math. Soc. 66 (1977), 335–343MathSciNetMATHCrossRefGoogle Scholar
  41. [41]
    Beyer, W.A., Smith, T.F. and Waterman, M.S., Some biological sequence metrics, Adv. Math. 20 (1976), 367–387MathSciNetMATHCrossRefGoogle Scholar
  42. [42]
    Bîrsan, T., Transitive quasi-uniformities and zero dimensional bitopological spaces, An. Sti. Univ. “Al. I. Cuza” lasi Sect. la Mat. 20 (1974), 317–322MATHGoogle Scholar
  43. [43]
    Blatter, J., Order compactifications of totally ordered topological spaces, J. Approximation Theory 13 (1975), 56–65MathSciNetMATHCrossRefGoogle Scholar
  44. [44]
    Blatter, J., Hewitt’s Stone-Weierstrass theorems for ordered topological spaces, in Functional Analysis, de Figueiredo (ed.), Proc. of the Brazilian Math. Soc. Symposium 1974, Lecture Notes in Pure and Applied Math., vol. 18, Dekker, New York (1976), 9–25Google Scholar
  45. [45]
    Blatter, J. and Seever, G.L., Interposition and lattice cones of functions, Trans. Amer. Math. Soc. 222 (1976), 65–96MathSciNetMATHCrossRefGoogle Scholar
  46. [46]
    Bonsangue, M.M., Rutten, J.J.M.M. and van Breugel, F., Alexandroff and Scott topologies for generalized metric spaces, in Papers on General Topology and Applications, Eleventh Summer Conference, Southern Maine, 1995, Annals New York Acad. Sci., vol. 806, 1996, 49–68CrossRefGoogle Scholar
  47. [47]
    Bonsangue, M.M., Rutten, J.J.M.M. and van Breugel, F., Generalized metric spaces: completion, topology, and powerdomains via the Yoneda embedding, Theoretical Computer Science 193 (1998), 1–51MathSciNetMATHCrossRefGoogle Scholar
  48. [48]
    Brock, P. and Kent, D.C., Approach spaces, limit tower spaces, and probabilistic convergence spaces, Appl. Categ. Struct. 5 (1997), 99–110MathSciNetMATHCrossRefGoogle Scholar
  49. [49]
    Brock, P. and Kent, D.C., On convergence approach spaces, Appl. Categ. Struct. 6 (1998), 117–125Google Scholar
  50. [50]
    Brown, L.M., On topological spaces with a unique compatible quasi-uniformity, Glasgow Math. J. 18 (1977), 11–12MathSciNetMATHCrossRefGoogle Scholar
  51. [51]
    Brown, L.M., Confluence para-quasi-uniformities, Topology theory and applications, 5th Colloq., Eger/Hung. 1983, Colloq. Math. Soc. Janos Bolyai, vol. 41, 1985, 125–152Google Scholar
  52. [52]
    Brown, L.M., Semi-sequentially normal bitopological spaces, Topology Appl. 44 (1992), 57–62MathSciNetMATHCrossRefGoogle Scholar
  53. [53]
    Brown, L.M., P-Q-metrizability of bitopological spaces with a dual base of countable order, Acta Math. Hung. 83 (1999), 315–325MATHGoogle Scholar
  54. [54]
    Brummer, G.C.L., Initial quasi-uniformities, Nederl. Akad. Wetensch. Proc. Ser. A 72 = Indag. Math. 31 (1969), 403–409MathSciNetGoogle Scholar
  55. [55]
    Brummer, G.C.L., On certain factorizations of functors into the category of quasi-uniform spaces, Quaestiones Math. 2 (1977), 59–84MathSciNetCrossRefGoogle Scholar
  56. [56]
    Brummer, G.C.L., On some bitopologically induced monads in Top, Structure of Topological Categories (Proceedings, Universität Bremen 1978), Mathematik-Arbeitspapiere Universität Bremen, vol. 18, 1979, 13–30aMathSciNetGoogle Scholar
  57. [57]
    Brummer, G.C.L., Two procedures in bitopology, Categorical Topology (Proc. Conf., Berlin 1978), Springer Lecture Notes Math., vol. 719, Berlin, 1979, pp. 35–43Google Scholar
  58. [58]
    Brummer, G.C.L., On the non-unique extension of topological to bitopological properties, Categorical Aspects of Topology and Analysis (Proc. Conf. Ottawa 1980), Springer Lecture Notes Math., vol. 915 (1982), pp. 50–67MathSciNetCrossRefGoogle Scholar
  59. [59]
    Brummer, G.C.L., Functorial transitive quasi-uniformities, Categorical Topology (Proc. Conf. Toledo Ohio 1983), Heldermann, Berlin 1984, 163–184Google Scholar
  60. [60]
    Brummer, G.C.L., Completions of functorial topological structures, in Recent Developments of General Topology and its Applications, Intern. Conf. in Memory of F. Hausdorff, Math. Research, vol. 67, Akademie Verlag, Berlin (1992), 60–71Google Scholar
  61. [61]
    Brummer, G.C.L., Categorical aspects of the theory of quasi-uniform spaces, Rend. Ist. Mat. Univ. Trieste 30 Suppl. (1999), 45–74 Google Scholar
  62. [62]
    Brummer, G.C.L., Giuli, E. and Holgate, D.B., Direct reflections, Appl. Categ. Struct. 8 (2000), 545–558 Google Scholar
  63. [63]
    Brümmer, G.C.L. and Künzi, H.P.A., Sobrification and bicompletion of totally bounded quasi-uniform spaces, Math. Proc. Camb. Phil. Soc. 101 (1987), 237247Google Scholar
  64. [64]
    Bukatin, M.A. and Scott, J.S., Towards computing distances between programs via Scott domains, in Logical Foundations of Computer Science, S. Adian, A. Nerode (eds.), Adian, A. 1234, 1997, 33–43Google Scholar
  65. [65]
    Bukatin, M.A. and Shorina, S.Y., Partial metrics and co-continuous valuations, Foundations of software science and computation structures, 1st international conference, FoSSaCS ’88, Lisbon, 1998,Nivat, M. (ed.), Springer Lecture Notes Computer Science, vol. 1378, 1998, pp. 125–139Google Scholar
  66. [66]
    Burdick, B.S., Uniform and proximal hyperspaces for bitopological spaces,Topology Proc. 24 (Summer 1999), to appearGoogle Scholar
  67. [67]
    Burke, D.K., Orthocompactness and perfect mappings, Proc. Amer. Math. Soc. 79 (1980), 484–486MathSciNetMATHCrossRefGoogle Scholar
  68. [68]
    Canfell, M.J., Semi-algebras and rings of continuous functions, Thesis, University of Edinburgh, 1968Google Scholar
  69. [69]
    Cao, J., On hyperspace topologies of some quasi-uniform spaces, J. Math. Research Exposition 11 (1991), 523–528 Google Scholar
  70. [70]
    Cao, J., Quasiuniform convergence for multifunctions, J. Math. Research Exposition 14 (1994) 327–331 Google Scholar
  71. [71]
    Cao, J., Answers to two questions of Papadopoulos, Questions Answers Gen. Topology 14 (1996), 111–116MathSciNetMATHGoogle Scholar
  72. [72]
    Cao, J., Künzi, H.P.A., Reilly, I.L. and Romaguera, S., Quasiuniform hyper-spaces of compact subsets, Topology Appl. 87 (1998), 117–126MathSciNetMATHCrossRefGoogle Scholar
  73. [73]
    Cao, J. and Reilly, I.L., Almost quasiuniform convergence for multifunctions, Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 36 (1996), 57–68 Google Scholar
  74. [74]
    Cao, J., On pairwise almost continuous multifunctions and closed graphs, Indian J. Math. 38 (1996), 1–17 Google Scholar
  75. [75]
    Cao, J., Reilly, I.L. and Romaguera, S., Some properties of quasiuniform multifunction spaces J. Austral. Math. Soc. (Ser. A) 64 (1998), 169–177 Google Scholar
  76. [76]
    Cao, J., Reilly, I.L. and Vamanamurthy, M.K., Comparison of convergences for multifunctions Demon. Math. 30 (1997), 171–182Google Scholar
  77. [77]
    Carlson, J.W., On the category of quasi-uniform spaces Kyungpook Math. J. 16 (1976), 63–69Google Scholar
  78. [78]
    Carlson, J.W., Quotient structures for quasi-uniform spaces, Colloq. Math. 36 (1976), 63–68MathSciNetMATHGoogle Scholar
  79. [79]
    Carlson, J.W., Nearness and quasi-uniform structures Topology Appl. 15 (1983), 19–28Google Scholar
  80. [80]
    Carlson, J.W. and Hicks, T.L., On completeness in quasi-uniform spaces J. Math. Anal. Appl. 34 (1971), 618–627 Google Scholar
  81. [81]
    Carlson, J.W. and Hicks, T.L., Some properties of quasi-uniform structures, Arch. Math. (Basel) 24 (1973), 81–86MathSciNetMATHCrossRefGoogle Scholar
  82. [82]
    Carlson, J.W., Hicks, T.L. and Huffman, S.M., Complete quasi-uniform spaces Canad. Math. Bull. 23 (1980), 497–498Google Scholar
  83. [83]
    Carter, K.S. and Hicks, T.L., Some results on quasi-uniform spaces Canad. Math. Bull. 19 (1976), 39–51Google Scholar
  84. [84]
    Chattopadhyay, K.C. and Hazra, R.N., Basic quasi-proximities, grills and compactifications, Rocky Mountain J. Math. 15 (1985), 835–851MathSciNetMATHCrossRefGoogle Scholar
  85. [85]
    Checa, E. and Romaguera, S., Continuity of contractive mappings on complete quasi-metric spaces Math. Japonica 35 (1990), 137–139Google Scholar
  86. [86]
    Chicourrat, M., RE-proximités et ultrafiltres, C.R. Acad. Sci. Paris 318 (1994), 143–148MathSciNetMATHGoogle Scholar
  87. [87]
    Chicourrat, M., RE-proximities as fixed points of an operator on pseudo proximities Topology Appl. 104 (2000), 39–51Google Scholar
  88. [88]
    Choban, M.M. and Nedev, S.I., On the theory of 0-metrizable spaces, I, II, III (Russian), Vestnik Moskov. Univ. Ser. I. Math. Meh. 27 1, 8–15; 2, 10–17; 3, 10–15 (1972)Google Scholar
  89. [89]
    Choe, T.H., Partially ordered topological spaces An. Acad. Bras. Cienc. 51 (1979), 53–63Google Scholar
  90. [90]
    Chou, C.C. and Penot, J.-P., Infinite products of relations, set-valued series and uniform openness of multifunctions Set-Valued Anal. 3 (1995), 11–21Google Scholar
  91. [91]
    Ciesielski, K., Flagg, R.C. and Kopperman, R., Characterizing topologies with bounded complete computational models, Electronic Notes Theoretical Computer Science 20 (1999), URL: http://www.elsevier.nl/locate/entcs/ volume20.htmlGoogle Scholar
  92. [92]
    Ciesielski, K., Flagg, R.C. and Kopperman, R., Polish spaces, computable approximations, and bitpological spaces, Topology Appl.,to appearGoogle Scholar
  93. [93]
    Ciric, L., Periodic and fixed point theorems in a quasi-metric space J. Austral. Math. Soc. (Ser. A) 54 (1993), 80–85Google Scholar
  94. [94]
    Ciric, L., Semi-continuous mappings and fixed point theorems in quasi metric spaces Publ. Math. Debrecen 54 (1999), 251–261Google Scholar
  95. [95]
    Collins, P.J., Gartside, P.M., Kopperman, R.D., Künzi, H.P.A. and Moody, P.J., On topologies generated by filters of relations, in Papers on General Topology and Applications, Seventh Summer Conference at the University of Wisconsin, 1991, Annals New York Acad. Sci., vol. 704, 1993, 53–69Google Scholar
  96. [96]
    Collins, P.J. and Morita, K., Coverings versus entourages, Topology Appl. 82 (1998), 125–130MathSciNetMATHCrossRefGoogle Scholar
  97. [97]
    Cooke, I.E. and Reilly, I.L., On bitopological compactness, J. London Math. Soc. 9 (1975), 518–522 Google Scholar
  98. [98]
    Csâszâr, A., Fondements de la topologie générale, Budapest—Paris 1960 Google Scholar
  99. [99]
    Csâszâr, A., Double compactification d’espaces syntopogènes, Ann. Univ. Sci. Budapest. Sect. Math. 7 (1964), 3–11MATHGoogle Scholar
  100. [100]
    Csâszâr, A., Regular extensions of quasi-uniformities, Studia Sci. Math. Hung. 14 (1979), 15–26MATHGoogle Scholar
  101. [101]
    Csâszâr, A.Extensions of quasi-uniformities, Acta Math. Hung. 37 (1981) 121–145Google Scholar
  102. [102]
    Csâszâr, A., Complete extensions of quasi-uniform spaces, in General Topology and its Relations to Modern Analysis and Algebra V, Proc. Fifth Topol. Symp. 1981 ( Heldermann, Berlin 1982 ), pp. 104–113Google Scholar
  103. [103]
    Csâszâr, A.D-completions of Pervin-type quasi-uniformities, Acta. Sci. Math. 57 (1993), 329–335 Google Scholar
  104. [104]
    Csâszâr, A.D-complete extensions of quasi-uniform spaces, Acta Math. Hung. 64 (1994), 41–54 Google Scholar
  105. [105]
    Csâszâr, A., On a class of D-Cauchy filters, Serdica Math. J. 24 (1998), 1–4MathSciNetMATHGoogle Scholar
  106. [106]
    Csâszâr, A.Quasi-uniform extensions for prescribed traces of sections of entourages, Acta Math. Hung. 79 (1998), 237–252 Google Scholar
  107. [107]
    Csâszâr, A.On a problem of simultaneous quasi-uniform extension, Acta Math. Hung. 82 (1999), 173–186 Google Scholar
  108. [108]
    Csâszâr, A.Old and new results on quasi-uniform extension, Rend. 1st. Mat. Univ. Trieste 30 Suppl. (1999), 75–85 Google Scholar
  109. [109]
    Csâszâr, A.On J. Deâk’s construction for quasi-uniform extensions, Rend. Ist. Mat. Univ. Trieste 30 Suppl. (1999), 87–90 Google Scholar
  110. [110]
    Csâszâr, A.Transitive quasi-uniformities and topogenous orders, Acta Math. Hung. 86 (2000), 83–87 Google Scholar
  111. [111]
    Csâszâr, A.Finite extensions of topogenities, Acta Math. Hung. 89 (2000), 55–69 Google Scholar
  112. [112]
    Csâszâr, A., Simultaneous extensions of topogenities,preprintGoogle Scholar
  113. [113]
    Csâszâr, A. and Domiaty, R.Z., Fine quasi-uniformities, Ann. Univ. Sci. Budapest. 22–23 (1979–80) 151–158Google Scholar
  114. [114]
    Cunningham, J.P., Free trees and bidirectional trees as representations of psychological distance, J. Math. Psychology 17 (1978), 165–188MathSciNetMATHCrossRefGoogle Scholar
  115. [115]
    Datta, M.C., Paracompactness in bitopological spaces and an application to quasi-metric spaces, Indian J. Pure Appl. Math. 8 (1977), 685–690MathSciNetMATHGoogle Scholar
  116. [116]
    Davis, A.S., Indexed systems of neighborhoods for general topological spaces, Amer. Math. Monthly 68 (1961), 886–893MathSciNetMATHCrossRefGoogle Scholar
  117. [117]
    Deâk, J., Extensions of quasi-uniformities for prescribed bitopologies I, II, Studia Sci. Math. Hung. 25 (1990), 45–67 and 69–91Google Scholar
  118. [118]
    Deâk, J., Bimerotopies I, II, Studia Sci. Math. Hung. 25 (1990), 241–261 and 307–321Google Scholar
  119. [119]
    Deâk, J., Notes on extensions of quasi-uniformities for prescribed topologies, Studia Sci. Math. Hung. 25 (1990), 231–234MATHGoogle Scholar
  120. [120]
    Deâk, J., A non-completely regular quiet quasi-metric, Math. Pannonica (2) 1 (1990), 111–116MATHGoogle Scholar
  121. [121]
    Deâk, J., Quasi-uniform extensions for finer topologies, Studia Sci. Math. Hung. 25 (1990), 97–105MATHGoogle Scholar
  122. [122]
    Deâk, J., On the coincidence of some notions of quasi-uniform completeness defined by filter pairs, Studia Sci. Math. Hung. 26 (1991), 411–413MATHGoogle Scholar
  123. [123]
    Deâk, J., Extending a quasi-metric, Studia Sci. Math. Hung. 28 (1993), 105–113MATHGoogle Scholar
  124. [124]
    Deâk, J., A survey of compatible extensions (presenting 77 unsolved problems), Colloq. Math. Soc. Janos Bolyai, vol. 55, Top., Pécs (Hungary) 1989, 1993, 127–175Google Scholar
  125. [125]
    Deâk, J., A note on weak symmetry properties of quasi-uniformities, Studia Sci. Math. Hung. 29 (1994), 433–435MATHGoogle Scholar
  126. [126]
    Deâk, J., Extending and completing quiet quasi-uniformities, Studia Sci. Math. Hung. 29 (1994), 349–362MATHGoogle Scholar
  127. [127]
    Deâk, J., A bitopological view of quasi-uniform completeness I, II, III, Studia Sci. Math. Hung. 30 (1995), 389–409; 30 (1995), 411–431 and 31 (1996), 385–404MATHGoogle Scholar
  128. [128]
    Deâk, J., Quasi-uniform completeness and neighbourhood filters, Studia Sci. Math. Hung. 32 (1996) 9–13Google Scholar
  129. [129]
    Deâk, J., Short notes on quasi-uniform spaces, I-V; Uniform local symmetry, Doubly uniformly strict extensions, Co-regularity, Cauchy type properties, Properties preserved by extensions, Acta Math. Hung. 69 (1995), 175–184; 69 (1995), 347–357; 70 (1996), 247–257; 70 (1996), 317–327; 79 (1998), 169–177MATHGoogle Scholar
  130. [130]
    Deâk, J. and Romaguera, S., Co-stable quasi-uniform spaces, Ann. Univ. Sci. Budapest. 38 (1995), 55–70MATHGoogle Scholar
  131. [131]
    Di Concilio, A., Spazi quasimetrici e topologie ad essi associate, Rend. Accad. Sci. Fis. Mat., Napoli (4) 38 (1971), 113–130Google Scholar
  132. [132]
    Dikranjan, D. and Künzi, H.P.A., Separation and epimorphisms in quasi-uniform spaces, Appl. Categ. Struct., 8 (2000), 175–207MATHCrossRefGoogle Scholar
  133. [133]
    Dmitruk, A.V., Milyutin, A.A. and Osmolovskii, N.P., Lyustemik’s theorem and the theory of extrema, Russian Math. Surveys 35 (1980), 11–51MathSciNetCrossRefGoogle Scholar
  134. [134]
    Doitchinov, D., On completeness in quasi-metric spaces, Topology Appl. 30 (1988), 127–148MathSciNetMATHCrossRefGoogle Scholar
  135. [135]
    Doitchinov, D., On completeness of quasi-uniform spaces, C.R. Acad. Bulg. Sci. (7) 41 (1988), 5–8MathSciNetMATHGoogle Scholar
  136. [136]
    Doitchinov, D., A concept of completeness of quasi-uniform spaces, Topology Appl. 38 (1991), 205–217MathSciNetMATHCrossRefGoogle Scholar
  137. [137]
    Doitchinov, D., Another class of completable quasi-uniform spaces, C.R. Acad. Bulg. Sci. (3) 44 (1991), 5–6MathSciNetMATHGoogle Scholar
  138. [138] Doitchinov, D., Some reflections on quasi-uniform frames, Topology with Applications, Szekszârd (Hungary)
    Bolyai Society, Mathematical Studies, vol. 4, 1995, pp. 151–158Google Scholar
  139. [139]
    Doitchinov, D., E-completions of quasi-uniform spaces, Proc. Symposium on Categorical Topology, University of Cape Town 1994, B Banaschewski, C.R.A. Gilmour and H. Herrlich (eds.), Dept. Math., University of Cape Town 1999, 89–102Google Scholar
  140. [140]
    Dolzhenko, E.P. and Sevast’yanov, E.A., Sign-sensitive approximations, the space of sign-sensitive weights. The rigidity and the freedom of a system, Russian Acad. Sci. Dokl. Math. 48 (1994), 397–401MathSciNetGoogle Scholar
  141. [141]
    Domiaty, R.Z., Zur inneren Geometrie quasimetrischer Räume, Mitt. Math. Ges. DDR 4 (1980), 45–49MathSciNetGoogle Scholar
  142. [142]
    Domiaty, R.Z., Life without T2. Differential-Geometric Methods in Theoretical Physics, Conf. Clausthal-Zellerfeld (FRG), July 1978. Lecture Notes Physics. BerlinHeidelberg-New York: Springer 1980Google Scholar
  143. [143]
    Dow, A. and Watson, S., Skula spaces, Comment. Math. Univ. Carol. 31 (1990), 27–31MathSciNetMATHGoogle Scholar
  144. [144]
    Dowker, C.H., Mappings of proximity structures, General Topology and its Relation to Modern Analysis and Algebra (Proc. Sympos., Prague 1961 ), 139141. Academic Press, New York; Publ. House, Czech. Acad. Sci., Prague 1962Google Scholar
  145. [145]
    Dzhajanbajev, D. and ostak, A.P., On a fuzzy uniform structure, Acta et Comm. Univ. Tartu 940 (1992), 31–36Google Scholar
  146. [146]
    Edalat, A. and Heckmann, R., A computational model for metric spaces, Theoretical Computer Science 193 (1998), 53–73MathSciNetMATHCrossRefGoogle Scholar
  147. [147]
    Engelking, R. and Lutzer, D., Paracompactness in ordered spaces, Fund. Math. 94 (1977), 49–58MathSciNetMATHGoogle Scholar
  148. [148]
    Erné, M., Ideal completions and compactifications, Mathematik-Arbeitspapiere Universität Bremen 48 (1997), 137–156Google Scholar
  149. [149]
    Fell, J.M.G., A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc. 13 (1962), 472–476MathSciNetMATHCrossRefGoogle Scholar
  150. [150]
    Ferrario, N. and Künzi, H.P.A., Bicompleteness of the fine quasi-uniformity, Math. Proc. Camb. Phil. Soc. 109 (1991), 167–186MATHCrossRefGoogle Scholar
  151. [151]
    Ferrer, J., On topological spaces with a unique quasi-proximity, Quaestiones Math. 17 (1994), 479–486MathSciNetMATHCrossRefGoogle Scholar
  152. [152]
    Ferrer, J. and Gregori, V., Quasi-metrization and completion for Pervin’s quasi-uniformity, Stochastica 6 (1982) 151–155Google Scholar
  153. [153]
    Ferrer, J. and Gregori, V., A sequentially compact non-compact quasi-pseudometric space, Monatsh. Math. 96 (1983), 269–270MathSciNetMATHCrossRefGoogle Scholar
  154. [154]
    Ferrer, J. and Gregori, V., A note on R. Stoltenberg’s completion theory of quasi-uniform spaces, Proc. London Math. Soc. 49 (1984), 36MathSciNetMATHCrossRefGoogle Scholar
  155. [155]
    Ferrer, J. and Gregori, V., Completeness and Baire spaces, Math. Chronicle 14 (1985), 39–42MathSciNetMATHGoogle Scholar
  156. [156]
    Ferrer, J. and Gregori, V., Topological linearly ordered spaces determined by Pervin’s quasi- uniformity, in Papers on General Topology and Applications, Eighth Summer Conf. Queens College, 1992, Annals New York Acad. Sci., vol. 728, 1994, 16–21MathSciNetGoogle Scholar
  157. [157]
    Ferrer, J., Gregori, V. and Kelly, C., A short note on pairwise normal spaces, Kyungpook Math. J. 33 (1993), 199–203MathSciNetMATHGoogle Scholar
  158. [158]
    Ferrer, J., Gregori, V. and Reilly, I.L., Some properties of semi-continuous functions and quasi-uniform spaces, Mat. Vesn. 47 (1995), 11–18MathSciNetMATHGoogle Scholar
  159. [159]
    Flagg, R.C., Completeness in continuity spaces, Category Theory 1991, R.A.G. Seely (ed.), Amer. Math. Soc., Providence, RI 1992, pp. 183–199Google Scholar
  160. [160]
    Ferrer, J. and Gregori, V., Algebraic theories of compact pospaces, Topology Appl. 77 (1997), 277–290MathSciNetCrossRefGoogle Scholar
  161. [161]
    Ferrer, J. and Gregori, V., Quantales and continuity spaces Algebra Univ. 37 (1997), 257–276Google Scholar
  162. [162]
    Flagg, R.C. and Kopperman, R.D., Fixed points and reflexive domain equations in categories of continuity spaces, Electronic Notes in Theoretical Computer Science, vol. 1, Elsevier, Amsterdam 1995. URL: http://www.elsevier.n1/10cate/entcs/volumel.html Google Scholar
  163. [163]
    Flagg, R.C. and Kopperman, R.D., Tychonoff poset structures and auxiliary relations, in Papers on General Topology and Applications, Ninth Summer Conference at Slippery Rock University, 1993, Annals New York Acad. Sci. vol. 767, 1995, 45–61MathSciNetGoogle Scholar
  164. [164]
    Flagg, R.C. and Kopperman, R.D., Continuity spaces: Reconciling domains and metric spaces Theoretical Computer Science 177 (1997), 111–138Google Scholar
  165. [165]
    Flagg, R.C., Kopperman, R. and Sünderhauf, P., Smyth completion as bicompletion Topology Appl. 91 (1999), 169–180Google Scholar
  166. [166]
    Flagg, R.C. and Sünderhauf, P., The essence of ideal completion in quantitive form, Theoretical Computer Science,to appearGoogle Scholar
  167. [167]
    Flagg, R.C., Sünderhauf, P. and Wagner, K., Representation of quantitative domanis, Theoretical Computer Science,to appearGoogle Scholar
  168. [168]
    Fleischman, W.M., On coverings of linearly ordered spaces Proc. Washington State University Conference on General Topology 1970, 52–55Google Scholar
  169. [169]
    Fletcher, P., Pairwise uniform spaces Notices Amer. Math. Soc. 83 (1965), p. 612 (abstract)Google Scholar
  170. [170]
    Fletcher, P., On totally bounded quasi-uniform spaces, Arch. Math. (Basel) 21 (1970), 396–401MathSciNetMATHCrossRefGoogle Scholar
  171. [171]
    Fletcher, P., Note on quasi-uniform spaces and representable spaces Colloq. Math. 23 (1971), 263–265Google Scholar
  172. [172]
    Fletcher, P., On completeness of quasi-uniform spaces Arch. Math. (Basel) 22 (1971), 200–204Google Scholar
  173. [173]
    Fletcher, P., A note on metrization of quasi-uniform spaces Colloq. Math. 24 (1971), 81–82Google Scholar
  174. [174]
    Fletcher, P., Homeomorphism groups with the topology of quasi-uniform convergence, Arch. Math. (Basel) 22 (1971), 88–93Google Scholar
  175. [175]
    Fletcher, P. Frith, J., Hunsaker, W. and Schauerte, A., The Nachbin quasi-uniformity of a bi-Stonian space, J. Austral. Math. Soc. (Ser. A) 61 (1996), 322–326Google Scholar
  176. [176]
    Fletcher, P., Hejcman, J. and Hunsaker, W., A noncompletely regular quiet quasi-uniformity Proc. Amer. Math. Soc. 108 (1990), 1077–1079Google Scholar
  177. [177]
    Fletcher, P., Hoyle III, H.B. and Patty, C.W., The comparison of topologies Duke Math. J. 36 (1969), 325–331Google Scholar
  178. [178]
    Fletcher, P. and Hunsaker, W., Uniformly regular quasi-uniformities Topology Appl. 37 (1990), 285–291Google Scholar
  179. [179]
    Fletcher, P. and Hunsaker, W., Entourage uniformities for frames Monatsh. Math. 112 (1991), 271–279Google Scholar
  180. [180]
    Fletcher, P. and Hunsaker, W., Completeness using pairs of filters Topology Appl. 44 (1992), 149–155Google Scholar
  181. [181]
    Fletcher, P. and Hunsaker, W., Symmetry conditions in terms of open sets Topology Appl. 45 (1992), 39–47Google Scholar
  182. [182]
    Fletcher, P. and Hunsaker, W., A note on totally bounded quasi-uniformities Serdica Math. J. 24 (1998), 95–98Google Scholar
  183. [183]
    Fletcher, P., Hunsaker, W. and Lindgren, W., Characterizations of frame quasi-uniformities, Quaestiones Math. 16 (1993), 371–383MathSciNetMATHCrossRefGoogle Scholar
  184. [184]
    Fletcher, P. and Hunsaker, W., Totally bounded frame quasi-uniformities, Comment. Math. Univ. Carol. 34 (1993), 529–537MathSciNetMATHGoogle Scholar
  185. [185]
    Fletcher, P. and Hunsaker, W., Frame quasi-uniformities, Monatsh. Math. 117 (1994), 223–236MathSciNetMATHCrossRefGoogle Scholar
  186. [186]
    Fletcher, P. and Künzi, H.P.A., A topological space without a complete quasi-uniformityProc. Amer. Math. Soc. 90 (1984), 611–615 Google Scholar
  187. [187]
    Fletcher, P. and Künzi, H.P.A., Extension properties induced by complete quasi-uniformitiesPacific J. Math. 120 (1985), 357–384 Google Scholar
  188. [188]
    Fletcher, P. and Lindgren, W.F., Transitive quasi-uniformities, J. Math. Anal. Appl. 39 (1972), 397–405 Google Scholar
  189. [189]
    Fletcher, P. and Lindgren, W.F., Quasi-uniformities with a transitive base, Pacific J. Math. 43 (1972), 619–631MathSciNetMATHCrossRefGoogle Scholar
  190. [190]
    Fletcher, P. and Lindgren, W.F., Orthocompactness and strong tech completeness in Moore spaces, Duke Math. J. 39 (1972), 753–766 (Correction, ibid. 40 (1973), 959)MathSciNetCrossRefGoogle Scholar
  191. [191]
    Fletcher, P. and Lindgren, W.F., Locally quasi-uniform spaces with countable bases, Duke Math. J. 41 (1974), 231–240MathSciNetMATHCrossRefGoogle Scholar
  192. [192]
    Fletcher, P. and Lindgren, W.F. Some unsolved problems concerning countably compact spaces, Rocky Mountain J. Math. 5 (1975), 95–106Google Scholar
  193. [193]
    Fletcher, P. and Lindgren, W.F., C-complete quasi-uniform spaces, Arch. Math. (Basel) 30 (1978), 175–180Google Scholar
  194. [194]
    Fletcher, P. and Lindgren, W.F. A construction of the pair completionof a quasi-uniform space, Canad. Math. Bull. 21 (1978), 53–59Google Scholar
  195. [195]
    Fletcher, P. and Lindgren, W.F., Equinormal quasi-uniformities and quasi-metrics, Glas. Mat. Ser. III 13 (33) (1978), 111–125Google Scholar
  196. [196]
    Fletcher, P. and Lindgren, W.F., A theory of uniformities for generalized ordered spaces, Canad. J. Math. 31 (1979), 35–44MathSciNetMATHCrossRefGoogle Scholar
  197. [197]
    Fletcher, P. and Lindgren, W.F., Quasi-Uniform Spaces, Lecture Notes Pure Appl. Math. 77, Dekker, New York 1982Google Scholar
  198. [198]
    Fletcher, P. and Lindgren, W.F.Compactifications of totally bounded quasi-uniform spaces, Glasgow Math. J. 28 (1986), 31–36Google Scholar
  199. [199]
    Fletcher, P. and Liu, P., Topologies compatible with homeomorphism groups, Pacific J. Math. 56 (1975), 77–86MathSciNetMATHCrossRefGoogle Scholar
  200. [200]
    Fletcher, P., McCoy, R.A. and Slover, R., On boundedly metacompact and boundedly paracompact spaces, Proc. Amer. Math. Soc. 25 (1970), 335–342 Google Scholar
  201. [201]
    Fletcher, P. and Naimpally, S.A., On almost complete and almost precompact quasi-uniform spaces, Czechoslovak Math. J. 21 (96) (1971), 383–390MathSciNetGoogle Scholar
  202. [202]
    Fora, A.A., Strongly zero-dimensional bitopological spaces, J. Univ. Kuwait (Sci.) 11 (1984), 181–190Google Scholar
  203. [203]
    Fox, R. Letter to S. Salbany, 1979Google Scholar
  204. [204]
    Fletcher, P. and Lindgren, W.F.A short proof of the Junnila quasi-metrization theorem, Proc. Amer. Math. Soc. 83 (1981), 663–664 Google Scholar
  205. [205]
    Fletcher, P. and Lindgren, W.F., Pretransitivity and products of suborderable spaces, Topology and Order Structures, MC Tract Part I, Amsterdam, 142 (1981), 115–118Google Scholar
  206. [206]
    Fletcher, P. and Lindgren, W.F., Solution of the y-space problem, Proc. Amer. Math. Soc. 85 (1982), 606–608MathSciNetGoogle Scholar
  207. [207]
    Fletcher, P. and Lindgren, W.F., On metrizability and quasi-metrizability,manuscript, 1981/2Google Scholar
  208. [208]
    Fletcher, P. and Lindgren, W.F., Letter to H.P.A. Künzi, 1985Google Scholar
  209. [209]
    Fox, R. and Kofner, J., A regular counterexample to the y-space conjecture, Proc. Amer. Math. Soc. 94 (1985), 502–506MathSciNetMATHGoogle Scholar
  210. [210]
    Francaviglia, S., Lechicki, A. and Levi, S., Quasi-uniformization of hyperspaces and convergence of nets of semicontinuous multifunctions, J. Math. Anal. Appl. 112 (1985), 347–370MathSciNetMATHCrossRefGoogle Scholar
  211. [211]
    Frink, A.H., Distance functions and the metrization problem, Bull. Amer. Math. Soc. 43 (1937), 133–142MathSciNetCrossRefGoogle Scholar
  212. [212]
    Frith, J.L., Structured Frames, Ph.D. Thesis, University of Cape Town, 1987Google Scholar
  213. [213]
    Frith, J.L. and Hunsaker, W., Completion of quasi-uniform frames, Appl. Categ. Struct. 7 (1999), 263–272MathSciNetCrossRefGoogle Scholar
  214. [214]
    Frith, J.L., Hunsaker, W. and Walters-Wayland, J., The Samuel compactification of a quasi-uniform frame, Topology Proc. 23 (Summer 1998 ), 115–126Google Scholar
  215. [215]
    Ganster, M. and Reilly, I.L., On pairwise paracompactness, J. Austral. Math. Soc. (Ser. A) 53 (1992), 281–285MathSciNetMATHCrossRefGoogle Scholar
  216. [216]
    Gantner, T.E. and Steinlage, R.C., Characterizations of quasi-uniformities, J. London Math. Soc. 5 (1972), 48–52MathSciNetMATHCrossRefGoogle Scholar
  217. [217]
    García-Ferreira, S., Romaguera, S. and Sanchis, M., Bounded subsets and Grothendieck’s theorem for bispaces, Houston J. Math. 25 (1999), 267–283MathSciNetMATHGoogle Scholar
  218. [218]
    Gartside, P.M. and Moody, P.J., A note on proto-metrisable spaces, Topology Appl. 52 (1993), 1–9MathSciNetMATHCrossRefGoogle Scholar
  219. [219]
    Gerlits, J., Künzi, H.P.A., Losonczi, A. and Szentmiklóssy, Z., The existence of compatible nontransitive totally bounded quasi-uniformities,Topology Appl., to appearGoogle Scholar
  220. [220]
    Gittings, R.F., Finite-to-one maps of generalized metric spaces, Pacific J. Math. 59 (1975), 33–41MathSciNetMATHCrossRefGoogle Scholar
  221. [221]
    Golan, J.S., More topologies on the torsion-theoretic spectrum of a ring, Periodic. Math. Hung. 21 (1990), 257–260MathSciNetMATHCrossRefGoogle Scholar
  222. [222]
    Gregori, V., Marín, J. and Romaguera, S., Some remarks on right K-completion of quasi-uniform spaces, Acta Math. Hung. 88 (2000), 139–146MATHCrossRefGoogle Scholar
  223. [223]
    Gregori, V. and Romaguera, S., Fixed point theorems for fuzzy mappings in quasi-metric spaces, Fuzzy Sets Syst., 115 (2000), 477–483MathSciNetMATHCrossRefGoogle Scholar
  224. [224]
    Gregori, V. and Romaguera, S., Common fixed point theorems for pairs of fuzzy mappings, Indian J. Math. 41 (1999), 43–54MathSciNetMATHGoogle Scholar
  225. [225]
    Gruenhage, G., A note on quasi-metrizability, Canad. J. Math. 29 (1977), 360366Google Scholar
  226. [226]
    Gregori, V. and Romaguera, S., Generalized metric spaces, in Handbook of Set-Theoretic Topology, K. Kunen and J.E. Vaughan (eds.), North-Holland, Amsterdam 1984, pp. 423–501Google Scholar
  227. [227]
    Gutiérrez García, J., De Prada Vicente, M.A. and ostak, A.P., Even fuzzy topologies and related structures, Quaestiones Math. 20 (1997), 327–350MathSciNetMATHCrossRefGoogle Scholar
  228. [228]
    Gutiérrez, A. and Romaguera, S., Two-valued functions, non-Archimedean quasi-metrics and ultraquasi-gauges, Mat. Vesn. 38 (1986), 225–234MATHGoogle Scholar
  229. [229]
    Gutiérrez, A. and Romaguera, S., A note on Cauchy sequences in quasi-pseudometric spaces, Glasn. Mat. 21 (1986), 191–200Google Scholar
  230. [230]
    Haddad, L., Sur quelques points de topologie générale. Théorie des nasses et des tramails, Ann. Fac. Sci. Clermont-Ferrand 44, fascicule 7, 1970, 3–80Google Scholar
  231. [231]
    Halpin, M.N., Transitive quasi-uniform spaces, M.Sc. thesis, Univ. Cape Town, 1974Google Scholar
  232. [232]
    Hansell, R.W., Borel measurable mappings for nonseparable metric spaces, Trans. Amer. Math. Soc. 161 (1971), 145–169MathSciNetMATHCrossRefGoogle Scholar
  233. [233]
    Harder, A.M. and Hicks, T.L., Fixed point theory and iteration procedures, Indian J. Pure Appl. Math. 19 (1988), 17–26MathSciNetMATHGoogle Scholar
  234. [234]
    Hausdorff, F., Grundzüge der Mengenlehre, Leipzig 1914Google Scholar
  235. [235]
    Heath, R.W., A postscript to a note on quasi-metric spaces, Notices Amer. Math. Soc. 19 (1972), A-338Google Scholar
  236. [236]
    Heath, R.W., A construction of a quasi-metric Souslin space with a point-countable base, Set-theoretic topology (Papers, Inst. Medicine and Math., Ohio Univ., Athens, Ohio, 1975–1976 ), 219–224Google Scholar
  237. [237]
    Heath, R.W., Some nonmetric, first countable, cancellative topological semigroups that are generalized metric spaces, Topology Appl. 44 (1992), 167–173MathSciNetMATHCrossRefGoogle Scholar
  238. [238]
    Heckmann, R., Approximation of metric spaces by partial metric spaces, Appl. Categ. Struct. 7 (1999), 71–83MathSciNetMATHCrossRefGoogle Scholar
  239. [239]
    Hejcman, J. and Vilímovskÿ, J., On a property of pseudometrics and uniformities near to convexity, Czechoslovak Math. J. 38 (113) (1988), 366–380MathSciNetGoogle Scholar
  240. [240]
    Henriksen, M., Kopperman, R., Mack, J. and Somerset, D.W.B., Joincompact spaces, continuous lattices, and C*-algebras, Algebra Univ. 38 (1997), 289–323MathSciNetMATHCrossRefGoogle Scholar
  241. [241]
    Henriksen, M., Kopperman, R., Rayburn, M. and Todd, A.R., Oxtoby’s pseudocompleteness revisited, Topology Appl. 100 (2000), 119–132MathSciNetMATHCrossRefGoogle Scholar
  242. [242]
    Herden, G., On a lifting theorem of Nachbin, Mathematical Social Sciences 19 (1990), 37–44MathSciNetMATHCrossRefGoogle Scholar
  243. [243]
    Hicks, T.L., Fixed point theorems for quasi-metric spaces, Math. Japonica 33 (1988), 231–236MathSciNetMATHGoogle Scholar
  244. [244]
    Hicks, T.L. and Huffman, S.M., A note on locally quasi-uniform spaces, Canad. Math. Bull. 19 (1976), 501–504MathSciNetMATHCrossRefGoogle Scholar
  245. [245]
    Hicks, T.L. and Satterwhite, R.E., Quasi-pseudometrics over Tikhonov semi-fields, Math. Japonica 22 (1977) 315–321Google Scholar
  246. [246]
    Hicks, T.L. and Sharma, P., Properties of z-spaces, Topology Proc. 4 (1979), 109–113MathSciNetGoogle Scholar
  247. [247]
    Hodel, R.E., Spaces defined by sequences of open covers which guarantee that certain sequences have cluster points, Duke Math. J. 39 (1977), 253–263MathSciNetCrossRefGoogle Scholar
  248. [248]
    Hodel, R.E., Metrizability of spaces satisfying Nagata’s condition, Math. Japonica 47 (1998), 287–293MathSciNetMATHGoogle Scholar
  249. [249]
    Hodel, R.E., Neigbhorhood assignments and cardinal functions: a unified approach to metrization and uniformity, Topology Appl. 90 (1998), 31–56MathSciNetMATHCrossRefGoogle Scholar
  250. [250]
    Hodel, R.E., A history of generalized metrizable spaces, in Handbook of the History of General Topology, C.E. Aull and R. Lowen (eds.), vol. 2, Dordrecht, Kluwer 1998, 541–576Google Scholar
  251. [251]
    Hoffmann, R.-E., On the sobrification remainder SX\X, Pacific J. Math. 83 (1979), 145–156MathSciNetMATHCrossRefGoogle Scholar
  252. [252]
    Hogan, D.T., Quotient quasi-uniformities, Math. Chronicle 4 (1976), 108–111MathSciNetGoogle Scholar
  253. [253]
    Hold, L. and Levi, S., Decomposition properties of hyperspace topologies, Set-Valued Anal. 5 (1997), 309–321MathSciNetCrossRefGoogle Scholar
  254. [254]
    Howes, N.R., Modern Analysis and Topology, Springer, Berlin 1995MATHCrossRefGoogle Scholar
  255. [255]
    Hung, H.H., Shrinkings of open neighbourhoods and a topological description of metrizability, Topology Proc. 22 (Summer 1997 ), 139–153Google Scholar
  256. [256]
    Hodel, R.E., Quasi-metrizability, Topology Appl. 83 (1998), 39–43MathSciNetCrossRefGoogle Scholar
  257. [257]
    Hunsaker, W.N., Extensions of continuous increasing functions, Topology Proc. 5 (1980), 105–110MathSciNetGoogle Scholar
  258. [258]
    Hunsaker, W.N. and Lindgren, W.F., Construction of quasi-uniformities, Math. Ann. 188 (1970), 39–42MathSciNetMATHCrossRefGoogle Scholar
  259. [259]
    Hodel, R.E., Upper semi-continuous functions and quasi-proximity classes, Bul. Inst. Politehn. Iasi (N.S.) 19(23) (1973) sect. I, 23–30Google Scholar
  260. [260]
    Hunsaker, W.N. and Picado, J., Frames with transitive structures, Appl. Categ. Struct.,to appearGoogle Scholar
  261. [261]
    Hutton, B., Uniformities on fuzzy topological spaces, J. Math. Anal. Appl. 58 (1977), 559–571MathSciNetMATHCrossRefGoogle Scholar
  262. [262]
    Jachymski, J., A contribution to fixed point theory in quasi-metric spaces, Publ. Math. Debrecen 43 (1993), 283–288MathSciNetMATHGoogle Scholar
  263. [263]
    Jawhari, E.M., Misane, D. and Pouzet, M., Retracts: Graphs and ordered sets from the metric point of view, Contemp. Math. 57 (1986), 175–226MathSciNetCrossRefGoogle Scholar
  264. [264]
    Jung, A. and Sünderhauf, P., Uniform approximation of topological spaces, Topology Appl. 83 (1998), 23–37MathSciNetMATHCrossRefGoogle Scholar
  265. [265]
    Junnila, H.J.K., Neighbornets, Pacific J. Math. 76 (1978), 83–108MathSciNetMATHCrossRefGoogle Scholar
  266. [266]
    Junnila, H.J.K., Covering properties and quasi-uniformities of topological spaces, Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, Va. 1978Google Scholar
  267. [267]
    Junnila, H.J.K. and Künzi, H.P.A., Ortho-bases and monotonic properties, Proc. Amer. Math. Soc. 119 (1993), 1335–1345MathSciNetMATHCrossRefGoogle Scholar
  268. [268]
    Junnila, H.J.K., Stability in quasi-uniform spaces and the inverse problem, Topology Appl. 49 (1993), 175–189MathSciNetMATHCrossRefGoogle Scholar
  269. [269]
    Junnila, H.J.K., Characterizations of absolute Fos-sets, Czechoslovak Math. J. 48 (123) (1998), 55–64MathSciNetMATHCrossRefGoogle Scholar
  270. [270]
    Junnila, H.J.K., Künzi, H.P.A. and Watson, S., On a class of hereditarily para-compact spaces, Fundam. Prikl. Mat. 4 (1998), 141–154 (Russian); preprint in Topology Atlas: URL: http://at.yorku.ca/p/a/a/g/09.htm(English)Google Scholar
  271. [271]
    Junnila, H.J.K., Smith, J.C. and Telegdrski, R., Closure preserving covers by small sets, Topology Appl. 23 (1986), 237–262MathSciNetMATHCrossRefGoogle Scholar
  272. [272]
    Kada, O., Suzuki, T. and Takahashi, W., Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japonica 44 (1996), 381–391MathSciNetMATHGoogle Scholar
  273. [273]
    Karthikeyan, C., Bicompletion of quasi-bitopological near-rings and quasibitopological N-groups, Indian J. Pure Appl. Math. 30 (1999), 211–220MathSciNetMATHGoogle Scholar
  274. [274]
    Katsaras, A.K., Fuzzy quasi-proximities and fuzzy quasi-uniformities, Fuzzy Sets Syst. 27 (1988), 335–343MathSciNetMATHCrossRefGoogle Scholar
  275. [275]
    Katsaras, A.K. and Petalas, C.G., Fuzzy topologies and fuzzy quasi-uniformities, Radovi Mat. 4 (1988), 15–29MathSciNetMATHGoogle Scholar
  276. [276]
    Keimel, K. and Roth, W., Ordered Cones and Approximation, Lecture Notes Math., vol. 1517, Springer, Berlin 1992Google Scholar
  277. [277]
    Kelly, J.C., Bitopological spaces, Proc. London Math. Soc. 13 (1963), 71–89Google Scholar
  278. [278]
    Kent, D.C. and Liu, D.M., Ordered compactifications and families of maps, Internat. J. Math. Math. Sci. 20 (1997), 105–110MathSciNetMATHCrossRefGoogle Scholar
  279. [279]
    Kent, D.C. and Richardson, G.D., Ordered probabilistic metric spaces, J. Austral. Math. Soc. (Ser. A) 46 (1989), 88–99Google Scholar
  280. [280]
    Kent, D.C. and Richmond, T.A., Ordered compactification of totally ordered spaces, Internat. J. Math. Math. Sci. 11 (1988), 683–694Google Scholar
  281. [281]
    Khanh, P.Q., On general open mapping theorems, J. Math. Anal. Appl. 144 (1989), 305–312MathSciNetMATHCrossRefGoogle Scholar
  282. [282]
    Kim, Y.K., Cauchy completions of quasi-uniform frames, Kyungpook Math. J. 38 (1998), 429–437MathSciNetMATHGoogle Scholar
  283. [283]
    Kimmie, Z., Functorial transitive quasi-uniformities and their bicompletion, Ph.D. Thesis, University of Cape Town, August 1995 Google Scholar
  284. [284]
    Kofner, Ja. A., Δ-metrizable spaces (Russian), Mat. Zametki 13 (1973), 277–287; (Translation = Math. Notes 13 (1973), 168–174 )MathSciNetMATHGoogle Scholar
  285. [285]
    Kofner, J., On qùasi-metrizability, Topology Proc. 5 (1980), 111–138MathSciNetGoogle Scholar
  286. [286]
    Kofner, J., Quasi-metrizable spaces, Pacific J. Math. 88 (1980), 81–89MathSciNetMATHCrossRefGoogle Scholar
  287. [287]
    Kofner, J., Closed mappings and quasi-metrics, Proc. Amer. Math. Soc. 80 (1980), 333–336MathSciNetMATHGoogle Scholar
  288. [288]
    Kofner, J.,Transitivity and the y-space conjecture in ordered spaces, Proc. Amer. Math. Soc. 81 (1981), 629–635Google Scholar
  289. [289]
    Kofner, J., Transitivity and ortho-bases, Canad. J. Math. 33 (1981), 1439–1447MathSciNetMATHCrossRefGoogle Scholar
  290. [290]
    Kofner, J., Open compact mappings, Moore spaces and orthocompactness, Rocky Mountain J. Math. 12 (1982), 107–112Google Scholar
  291. [291]
    Kong, T.Y., Kopperman, R. and Meyer, P.R., Which spaces have metric analogs, General Topology and Applications, Proc. 5th Northeast Conf., New York/NY (USA) 1989, Lect. Notes Pure Appl. Math., vol.134, 1991 209–215Google Scholar
  292. [292]
    Konstandilaki-Savopoulou, Ch. and Reilly, I.L., ‘On Datta’s bitopological paracompactness’, Indian J. Pure Appl. Math. 12 (1981), 799–803MathSciNetGoogle Scholar
  293. [293]
    Kopperman, R.D., Lengths on semigroups and groups, Semigroup Forum 25 (1982), 345–360MathSciNetMATHCrossRefGoogle Scholar
  294. [294]
    Kopperman, R.D., All topologies come from generalized metrics, Amer. Math. Monthly 95 (1988), 89–97MathSciNetMATHCrossRefGoogle Scholar
  295. [295]
    Kopperman, R.D., Total boundedness and compactness for filter pairs, Ann. Univ. Sci. Budapest. 33 (1990), 25–30 Google Scholar
  296. [296]
    Kopperman, R.D., Which topologies are quasimetrizable? Topology Appl. 52 (1993), 99–107Google Scholar
  297. [297]
    Kopperman, R.D., Asymmetry and duality in topology, Topology Appl. 66 (1995), 1–39MathSciNetMATHCrossRefGoogle Scholar
  298. [398]
    Kouphos, Th.K. and Papadopoulos, B.K., Exponential laws for function spaces equipped with the quasi-uniformity of the quasi-uniform convergence, Ann. Soc. Sci. Bruxelles Sér. I, 101 (1987), 89–97MathSciNetMATHGoogle Scholar
  299. [299]
    Krishnan, V.S., A note on semiuniform spaces, J. Madras Univ. Sect. B 25 (1955), 123–124MathSciNetMATHGoogle Scholar
  300. [300]
    Kiinzi, H.P.A., On strongly quasi-metrizable spaces, Arch. Math. (Basel) 41 (1983), 57–63MathSciNetCrossRefGoogle Scholar
  301. [301]
    Kiinzi, H.P.A., A note on sequentially compact quasi-pseudometric spaces, Monatsh. Math. 95 (1983), 219–220MathSciNetCrossRefGoogle Scholar
  302. [302]
    Kiinzi, H.P.A., A note on Ralph Fox’s y-space, Proc. Amer. Math. Soc. 91 (1984), 467–470MathSciNetGoogle Scholar
  303. [303]
    Kiinzi, H.P.A., Topological spaces with a unique compatible quasi-proximity, Arch. Math. (Basel) 43 (1984), 559–561MathSciNetCrossRefGoogle Scholar
  304. [304]
    Transitivity is neither hereditary nor finitely productive, Topology Appl. 19 (1985), 165–168MathSciNetCrossRefGoogle Scholar
  305. [305]
    Kiinzi, H.P.A., The Fell compactification and quasi-uniformities, Topology Proc. 10 (1985), 305–328MathSciNetGoogle Scholar
  306. [306]
    Kiinzi, H.P.A., Generalizations of preorthocompactness, Questions Answers Gen. Topology 4 (1986) 15–35Google Scholar
  307. [307]
    Kiinzi, H.P.A., Topological spaces with a unique compatible quasi-uniformity, Canad. Math. Bull. 29 (1986), 40–43MathSciNetCrossRefGoogle Scholar
  308. [308]
    Kiinzi, H.P.A., Topological spaces with a coarsest compatible quasi-proximity, Quaestiones Math. 10 (1986), 179–196MathSciNetCrossRefGoogle Scholar
  309. [309]
    Kiinzi, H.P.A., A note on uniform ordered spaces, J. Austral. Math. Soc. (Ser. A) 42 (1987), 349–352MathSciNetCrossRefGoogle Scholar
  310. [310]
    Kiinzi, H.P.A., Kelley’s conjecture and preorthocompactness, Topology Appl. 26 (1987), 13–23MathSciNetCrossRefGoogle Scholar
  311. [311]
    Kiinzi, H.P.A., Some remarks on quasi-uniform spaces, Glasgow Math. J. 31 (1989), 309–320MathSciNetCrossRefGoogle Scholar
  312. [312]
    Kiinzi, H.P.A., Completely regular ordered spaces, Order 7 (1990), 283–293MathSciNetCrossRefGoogle Scholar
  313. [313]
    Kiinzi, H.P.A., A regular space without a uniformly regular quasi-uniformity, Monatsh. Math. 110 (1990), 115–116MathSciNetCrossRefGoogle Scholar
  314. [314]
    Kiinzi, H.P.A., Totally bounded quiet quasi-uniformities, Topology Proc. 15 (1990), 113–115MathSciNetGoogle Scholar
  315. [315]
    Kiinzi, H.P.A., Functorial admissible quasi-uniformities on topological spaces, Topol- ogy Appl. 43 (1992), 27–36Google Scholar
  316. [316]
    Kiinzi, H.P.A., Complete quasi-pseudo-metric spaces, Acta Math. Hung. 59 (1992), 121–146CrossRefGoogle Scholar
  317. [317]
    Kiinzi, H.P.A., Strongly zero-dimensional bispaces, J. Austral. Math. Soc. (Ser. A) 53 (1992), 327–337MathSciNetCrossRefGoogle Scholar
  318. [318]
    Kiinzi, H.P.A., Quasi-uniformities defined by sets of neighborhoods, in Papers on General Topology Applications, Sixth Summer Conference at Long Island University, 1990, Annals New York Acad. Sci., vol. 659, 1992, 125–137Google Scholar
  319. [319]
    Kiinzi, H.P.A., Minimal order compactifications and quasi-uniformities, in Recent De- velopments of General Topology and its Applications, Intern. Conf. in Memory of F. Hausdorff, Math. Research, vol. 67, Akademie Verlag, Berlin 1992, 181–186Google Scholar
  320. [320]
    Kiinzi, H.P.A., Quasi-uniform spaces — eleven years later, Topology Proc. 18 (1993), 143–171MathSciNetGoogle Scholar
  321. [321]
    Kiinzi, H.P.A., Fonctions distances non-symétriques, Séminaire Initiation It l’Analyse, Publ. Math. Univ. Pierre et Marie Curie, Paris VI, n 12, 33ème Année (1993/1994), p. 8Google Scholar
  322. [322]
    Kiinzi, H.P.A., Nonsymmetric topology, Bolyai Society in Mathematical Studies 4, Topology, Szekszdrd, 1993, Hungary, ( Budapest 1995 ), 303–338Google Scholar
  323. [323]
    Kiinzi, H.P.A., On quasi-uniform convergence and quiet spaces, Questions Answers Gen. Topology 13 (1995), 87–92MathSciNetGoogle Scholar
  324. [324]
    Kiinzi, H.P.A., Quasi-uniform isomorphism groups, in Recent Progress in Function Spaces, G. Di Maio and L. Hold (eds.), Quaderni di matematica, Dip. Mat. Sec. Univ. Napoli, vol. 3, 1998, 187–220Google Scholar
  325. [325]
    Kiinzi, H.P.A., Perfect preimages having Gs-diagonals of quasi-metrizable spaces, Indian J. Math. 41 (1999), 33–37MathSciNetGoogle Scholar
  326. [326]
    Kiinzi, H.P.A., Nontransitive quasi-uniformities, Publ. Math. Debrecen 55 (1999), 161–167Google Scholar
  327. [327]
    Kiinzi, H.P.A., Remark on a result of Losonczi, Studia Sci. Math. Hung., 36 (2000), 367–370Google Scholar
  328. [328]
    Kiinzi, H.P.A., Preservation of completeness under mappings in asymmetric topology, Appl. General Topology 1 (2000), 99–114Google Scholar
  329. [329]
    Künzi, H.P.A. and Losonczi, A., Semilattices of totally bounded quasi-uniformities, Topology Appl. to appearGoogle Scholar
  330. [330]
    Künzi, H.P.A. and Losonczi, A., On some cardinal functions related to quasi-uniformities, Houston J. Math. 26 (2000), 299–313MathSciNetMATHGoogle Scholar
  331. [331]
    Künzi, H.P.A. and Lüthy, A., Dense subspaces of quasi-uniform spaces, Studia Sci. Math. Hung. 30 (1995), 289–301MATHGoogle Scholar
  332. [332]
    Künzi, H.P.A., Marín, J. and Romaguera, S., Quasi-uniformities on topological semigroups and bicompletion,Semigroup Forum, to appearGoogle Scholar
  333. [333]
    Künzi, H.P.A., Mrsevic, M., Reilly, I.L. and Vamanamurthy, M.K., Convergence, precompactness and symmetry in quasi-uniform spaces, Math. Japonica 38 (1993), 239–253MATHGoogle Scholar
  334. [334]
    Künzi, H.P.A., Mrsevic, M., Reilly, I.L., Prelindelöf quasi-pseudo-metric and quasi-uniform spaces, Mat. Vesn. 46 (1994), 81–87MATHGoogle Scholar
  335. [335]
    Künzi, H.P.A. and Pérez-Peíialver, M.J., The number of compatible totally bounded quasi-uniformities, Acta Math. Hung. 88 (2000), 15–23MATHCrossRefGoogle Scholar
  336. [336]
    Künzi, H.P.A. and Romaguera, S., Some remarks on Doitchinov completeness, Topology Appl. 74 (1996), 61–72MathSciNetMATHCrossRefGoogle Scholar
  337. [337]
    Künzi, H.P.A. and Romaguera, S., Completeness of the quasi-uniformity of quasi-uniform convergence, in Papers on General Topology and Applications, Eleventh Summer Conference, Southern Maine, 1995, Annals New York Acad. Sci., vol. 806, 1996, 231–237Google Scholar
  338. [338]
    Künzi, H.P.A. and Romaguera, S., Spaces of continuous functions and quasi-uniform convergence, Acta Math. Hung. 75 (1997), 287–298MATHCrossRefGoogle Scholar
  339. [339]
    Künzi, H.P.A. and Romaguera, S., Left K-completeness of the Hausdorff quasi-uniformity, Rostock. Math. Kolloq. 51 (1997), 167–176MATHGoogle Scholar
  340. [340]
    Künzi, H.P.A. and Romaguera, S., Well-quasi-ordering and the Hausdorff quasi-uniformity, Topology Appl. 85 (1998), 207–218MathSciNetMATHCrossRefGoogle Scholar
  341. [341]
    Künzi, H.P.A. and Romaguera, S., Quasi-metric spaces, quasi-metric hyperspaces and uniform local compactness, Ren. Ist. Mat. Univ. Trieste 30 Suppl. (1999), 133–144Google Scholar
  342. [342]
    Künzi, H.P.A., Romaguera, S. and Salbany, S., Topological spaces that admit bicomplete quasi-pseudometrics, Ann. Univ. Sci. Budapest. 37 (1994), 185–195MATHGoogle Scholar
  343. [343]
    Künzi, H.P.A., Romaguera, S., Bispaces admitting only bicomplete or only totally bounded quasi- metrics, Rend. Circ. Mat. Palermo II,to appear; preprint partially in: H.P.A. Künzi and S. Romaguera, On hereditarily compact quasi-pseudometrizable spaces,in Seminarberichte FernUniversität Gesamthochschule in Hagen, Fachbereich Mathematik, 63(3) (1998), 439–446Google Scholar
  344. [344]
    Künzi, H.P.A., Romaguera, S. and Sipacheva, O.V., The Doitchinov completion of a regular paratopological group, Serdica Math. J. 24 (1998), 73–88MathSciNetMATHGoogle Scholar
  345. [345]
    Künzi, H.P.A. and Ryser, C., The Bourbaki quasi-uniformity, Topology Proc. 20 (1995), 161–183MathSciNetMATHGoogle Scholar
  346. [346]
    Künzi, H.P.A. and Schellekens, M.P., On the Yoneda-completion of a quasimetric space, Theoretical Computer Science,to appearGoogle Scholar
  347. [347]
    Künzi, H.P.A. and Vajner, V., Weighted quasi-metrics, in Papers on General Topology and Applications, Eighth Summer Conf. Queens College 1992, Annals New York Acad. Sci., vol. 728, 1994, 64–77Google Scholar
  348. [348]
    Künzi, H.P.A. and Wajch, E., Borel classification via quasi-metrics, Topology Appl. 77 (1997), 183–192MathSciNetMATHCrossRefGoogle Scholar
  349. [349]
    Künzi, H.P.A. and Wajch, E., On a-discrete Borel mappings via quasi-metrics, Czechoslovak Math. J. 48 (123) (1998), 439–455MathSciNetMATHCrossRefGoogle Scholar
  350. [350]
    Künzi, H.P.A. and Watson, S., A metrizable completely regular ordered space, Comment. Math. Univ. Carol. 35 (1994), 773–778MATHGoogle Scholar
  351. Künzi, H.P.A. and Watson, S., A nontrivial Ti-space admitting a unique quasi-proximity, Glasgow Math. J. 38 (1996) 207–213Google Scholar
  352. [352]
    Künzi, H.P.A. and Watson, S., A quasi-metric space without complete quasi-uniformity, Topology Appl. 70 (1996), 175–178MathSciNetMATHCrossRefGoogle Scholar
  353. [353]
    Künzi, H.P.A. and Watson, S., A nontransitive space based on combinatorics, Boll. U.M.I. (8) 2-B (1999), 315–317Google Scholar
  354. [354]
    Lal, S. and Singal, M.K., Proximity ordered spaces, J. London Math. Soc. 14 (1976), 393–404MathSciNetMATHCrossRefGoogle Scholar
  355. [355]
    Lambrinos, P.Th., Quasi proximal continuity, Bull. Austral. Math. Soc. 9 (1973), 89–98MathSciNetMATHCrossRefGoogle Scholar
  356. [356]
    Lambrinos, P.Th., Quasi-uniform characterizations of (weak) boundedness and (weak) compactness, Annal. Soc. Sci. Bruxelles 90 (1976), 307–316MathSciNetMATHGoogle Scholar
  357. [357]
    Lambrinos, P.Th., On precompact (quasi-)uniform structures, Proc. Amer. Math. Soc. 62 (1977), 365–366MathSciNetMATHCrossRefGoogle Scholar
  358. [358]
    Lane, E.P., Bitopological spaces and quasi-uniform spaces, Proc. London Math. Soc. 17 (1967), 241–256MathSciNetMATHCrossRefGoogle Scholar
  359. [359]
    Lawson, J.D., Order and strongly sober compactifications, in Topology and Category Theory in Computer Science, G.M. Reed, A.W. Roscoe and R.F. Wachter (eds.), Clarendon Press, Oxford 1991, 179–205Google Scholar
  360. [360]
    Lawvere, F.W., Metric spaces, generalized logic, and closed categories, Rend. Sem. Mat. Fis. Milano 43 (1973), 135–166MathSciNetCrossRefGoogle Scholar
  361. [361]
    Lee, Y.J. and Lowen, R., Approach theory in merotopic, Cauchy and convergence spaces, I and II, Acta Math. Hung. 83 (1999), 189–207; 209–229MathSciNetMATHCrossRefGoogle Scholar
  362. [362]
    Levine, N. and Stager, W.J., Jr., On the hyper-space of a quasi-uniform space, Math. J. Okayama Univ. 15 (1971–72), 101–106Google Scholar
  363. Lindgren, W.F., Topological spaces with unique quasi-uniform structure, Arch. Math. (Basel) 22 (1971) 417–419Google Scholar
  364. [364]
    Lindgren, W.F., Topological spaces with a unique compatible quasi-uniformity, Canad. Math. Bull. 14 (1971), 369–372MathSciNetMATHCrossRefGoogle Scholar
  365. [365]
    Lindgren, W.F. and Nyikos, P.J., Spaces with bases satisfying certain order and intersection properties, Pacific J. Math. 66 (1976), 455–476MathSciNetMATHCrossRefGoogle Scholar
  366. [366]
    Losonczi, A., The cardinality of the coarsest quasi-proximity class of locally compact T2-spaces, Topology Proc. 23 (Spring 1998 ), 245–262Google Scholar
  367. [367]
    Losonczi, A., Finite quasi-uniform extensions I, II, Acta Math. Hung. 79 (1998), 85–116; 82 (1999), 35–55Google Scholar
  368. [368]
    Losonczi, A., Special simultaneous quasi-uniform extensions, Acta Math. Hung. 84 (1999), 9–18MathSciNetMATHCrossRefGoogle Scholar
  369. [369]
    Losonczi, A., On the cardinality of compatible quasi-uniformities, Topology Appl. 103 (2000), 43–54MathSciNetMATHCrossRefGoogle Scholar
  370. [370]
    Losonczi, A., Topological spaces with a coarsest compatible quasi-uniformity, Quaes- tiones Math. 23 (2000), 67–75MathSciNetMATHGoogle Scholar
  371. [371]
    Losonczi, A., On the cardinality of Tr(3), Comment. Math. Univ. Carol.,to appearGoogle Scholar
  372. [372]
    Losonczi, A., Notes on the coarsest element of ir(3),preprintGoogle Scholar
  373. [373]
    Lowen, E. and Lowen, R., A quasitopos containing CONV and MET as full subcategories, Internat. J. Math. Math. Sci. 11 (1988), 417–438MathSciNetMATHCrossRefGoogle Scholar
  374. [374]
    Lowen, E. and Lowen, R., Topological quasitopos hulls of categories containing topological and metric objects, Cah. Topologie Géom. Diff. Cat. 30 (1989), 213–228MathSciNetMATHGoogle Scholar
  375. [375]
    Lowen-Colebunders, E., Lowen, R. and Nauwelaerts, M., The Cartesian closed hull of the category of approach spaces, Cah. Topologie Géom. Diff. Cat.,to appearGoogle Scholar
  376. [376]
    Lowen, E., Lowen, R. and Verbeeck, C. Exponential objects in the construct PRAP, Cah. Topologie Géom. Diff. Cat. 38 (1997), 259–276MathSciNetMATHGoogle Scholar
  377. [377]
    Lowen, R., Kuratowski’s measure of non-compactness revisited, Q. J. Math. Oxf. II, 39 (1988), 235–254MathSciNetMATHCrossRefGoogle Scholar
  378. [378]
    Lowen, R., Approach spaces: a common supercategory of TOP and MET, Math. Nachr. 141 (1989), 183–226MathSciNetMATHCrossRefGoogle Scholar
  379. [379]
    Lowen, R., A topological category suited for approximation theory? J. Approxima- tion Theory 56 (1989), 108–117MathSciNetMATHGoogle Scholar
  380. [380]
    Lowen, R., Cantor-connectedness revisited, Comment. Math. Univ. Carol. 33 (1992), 525–532MathSciNetMATHGoogle Scholar
  381. [381]
    Lowen, R., Approximation of weak convergence, Math. Nachr. 160 (1993), 299–312Google Scholar
  382. [382]
    Lowen, R., Approach Spaces: The Missing Link in the Topology — Uniformity — Metric Triad, Oxford Mathematical Monographs, Oxford University Press 1997MATHGoogle Scholar
  383. [383]
    Lowen, R. and Robeys, K., Completions of products of metric spaces, Q.J. Math. Oxf. II 43 (1992), 319–338MathSciNetMATHCrossRefGoogle Scholar
  384. [384]
    Lowen, R. and Robeys, K., Products of metric spaces, in Recent Developments of General Topology and its Applications, Intern. Conf. in Memory of E Hausdorff, Math. Research, vol. 67, Akademie Verlag, Berlin 1992, 203–211Google Scholar
  385. [385]
    Lowen, R. and Robeys, K., Compactifications of products of metric spaces and their relations to tech-Stone and Smirnov compactifications, Topology Appl. 55 (1994), 163183Google Scholar
  386. [386]
    Lowen, R. and Sioen, M., The Wijsman and Attouch-Wets topologies on hyperspaces revisited, Topology Appl. 70 (1996), 179–197MathSciNetMATHCrossRefGoogle Scholar
  387. [387]
    Lowen, R. and Sioen, M., A unified functional look at completion in MET, UNIF and AP, Appl. Categ. Struct. 8 (2000), 447–461MathSciNetMATHCrossRefGoogle Scholar
  388. [388]
    Lowen, R. and Sioen, M., Proximal hypertopologies revisited, Set-Valued Anal. 6 (1998), 1–19MathSciNetMATHCrossRefGoogle Scholar
  389. [389]
    Lowen, R. and Sioen, M., Weak representations of quantified hyperspace structures, Topology Appl. 104 (2000), 169–179MathSciNetMATHCrossRefGoogle Scholar
  390. [390]
    Lowen, R. and Sioen, M., Approximation in functional analysis, Results Math. 37 (2000), 345–372Google Scholar
  391. [391]
    Lowen, R. and Sioen, M., A Wallman-Shanin-type compactification for approach spaces, Rocky Mountain J. Math. 30 (2000)Google Scholar
  392. [392]
    Lowen, R. and Sioen, M., A small note on separation in AP preprint.Google Scholar
  393. [393]
    Lowen, R., Sioen, M. and Vaughan, Completing quasi-metric spaces — an Approach approach,preprintGoogle Scholar
  394. [394]
    Lowen, R. and Vaughan, D.J., A non quasi-metric completion for quasi-metric spaces, Rend. Istit. Mat. Univ. Trieste 30 Suppl. (1999), 145–163Google Scholar
  395. [395]
    Lowen, R. and Verbeeck, C., Local compactness in approach spaces, I and II, Internat. J. Math. Math. Sci. 21 (1998), 429–438, to appearGoogle Scholar
  396. [396]
    Lowen, R. and Windels, B., On the quantification of uniform properties, Comment. Math. Univ. Carol. 38 (1997), 749–759MathSciNetMATHGoogle Scholar
  397. [397]
    Lowen, R. and Windels, B., AUnif: a common supercategory of pMET and Unif, Internat. J. Math. Math. Sci. 21 (1998), 1–18MathSciNetMATHCrossRefGoogle Scholar
  398. [398]
    Lowen, R. and Windels, B., Quantifying completion, Internat. J. Math. Math. Sci.,23 (2000), 729–739Google Scholar
  399. [399]
    Maes, P., The fuzzy Hausdorff-Bourbaki structures and their relations with the fuzzy Vietoris structures, Fuzzy Sets Syst. 31 (1989), 67–76MathSciNetMATHCrossRefGoogle Scholar
  400. [400]
    Mansfield, M.J., Some generalizations of full normality, Trans. Amer. Math. Soc. 86 (1957), 489–505MathSciNetMATHCrossRefGoogle Scholar
  401. [401]
    Marciszewski, W. and Pelant, J., Absolute Borel sets and function spaces, Trans. Amer. Math. Soc. 349 (1997), 3585–3596MathSciNetMATHCrossRefGoogle Scholar
  402. [402]
    Marin, J. and Romaguera, S., On the bitopological extension of the Bing metrization theorem, J. Austral Math. Soc. (Ser. A) 44 (1988), 233–241MathSciNetMATHCrossRefGoogle Scholar
  403. [403]
    Marin, J. and Romaguera, S., Pairwise monotonically normal spaces, Comment. Math. Univ. Carol. 32 (1991), 567–579; correction: ibid. 33 (1992), 181MathSciNetMATHGoogle Scholar
  404. [404]
    Marin, J. and Romaguera, S., On quasi-uniformly continuous functions and Lebesgue spaces, Publ. Math. Debrecen 48 (1996), 347–355MathSciNetGoogle Scholar
  405. [405]
    Marin, J. and Romaguera, S., A bitopological view of quasi-topological groups, Indian J. Pure Appl. Math. 27 (1996), 393–405MathSciNetMATHGoogle Scholar
  406. [406]
    Marin, J. and Romaguera, S., Bicompleting the left quasi-uniformity of a paratopological group, Arch. Math. (Basel) 70 (1998), 104–110MathSciNetMATHCrossRefGoogle Scholar
  407. [407]
    Matthews, S.G., Partial metric topology, in Papers on General Topology and Applications, Eighth Summer Conf. Queens College, 1992, Annals New York Acad. Sci., vol. 728, 1994, 183–197MathSciNetGoogle Scholar
  408. [408]
    McCartan, S.D., Separation axioms for topological ordered spaces, Proc. Camb. Phil. Soc. 64 (1968), 965–973Google Scholar
  409. [409]
    Michael, E., Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152–183Google Scholar
  410. [410]
    Mooney, D.D. and Richmond, T.A., Cardinality and structure of semilattices of ordered compactifications, in Papers on General Topology and Applications, Ninth Summer Conference at Slippery Rock University 1993, Annals New York Acad. Sci., vol. 767, 1995, 188–193MathSciNetGoogle Scholar
  411. [411]
    Mooney, D.D. and Richmond, T.A., The lattice of ordered compactifications of a direct sum of totally ordered spaces, Order 15 (1998), 1–19MathSciNetMATHCrossRefGoogle Scholar
  412. [412]
    Morales, P., Topological contraction principle, Fundamenta Math. 110 (1980), 135–144MATHGoogle Scholar
  413. [413]
    Mrsevic, M., Reilly, I.L. and Vamanamurthy, M.K., Lebesgue sets in quasipseudo-metric spaces, Math. Japonica 37 (1992), 189–194MathSciNetMATHGoogle Scholar
  414. [414]
    Murdeshwar, M.G. and Naimpally, S.A., Tennungsaxioms in quasi-uniform spaces, Nieuw Archief voor Wiskunde (3) 14 (1964), 97–101MathSciNetGoogle Scholar
  415. [415]
    Quasi-Uniform Topological Spaces Noordhoff, Groningen 1966Google Scholar
  416. [416]
    Murdeshwar, M.G. and Theckedath, K.K., Boundedness in a quasi-uniform space, Canad. Bull. 13 (1970), 367–370MathSciNetMATHCrossRefGoogle Scholar
  417. [417]
    Nachbin, L., Sur les espaces topologiques ordonnés, C.R. Acad. Sci. Paris 226 (1948), 381–382MathSciNetMATHGoogle Scholar
  418. [418]
    Nachbin, L., Sur les espaces uniformisables ordonnés, C.R. Acad. Sci. Paris 226 (1948), 547MathSciNetMATHGoogle Scholar
  419. [419]
    Nachbin, L., Sur les espaces uniformes ordonnés, C.R. Acad. Sci. Paris 226 (1948), 774–775MathSciNetMATHGoogle Scholar
  420. [420]
    Nachbin, L., Topology and Order, D. van Nostrand, Princeton 1965MATHGoogle Scholar
  421. [421]
    Nagel, R., (ed.), in W. Arendt et al., One-parameter Semigroups of Positive Operators, Springer Lecture Notes Math., vol. 1184 Berlin, 1986Google Scholar
  422. [422]
    Nailana, K.R., Strict complete regularity in the categories of bitopological spaces and ordered topological spaces, Publ. Math. Debrecen to appearGoogle Scholar
  423. [423]
    Naimpally, S.A., Function spaces of quasi-uniform spaces, Nederl. Akad. Wet. Proc. Ser. A 68 = Indag. Math. 27 (1966), 768–771MathSciNetGoogle Scholar
  424. [424]
    Naimpally, S.A., Separation axioms in quasi-uniform spaces, Amer. Math. Month. 74 (1967), 283–284MathSciNetMATHCrossRefGoogle Scholar
  425. [425]
    Nauwelaerts, M., The Cartesian closed topological hull of the category of (quasi-)uniform spaces (revisited), Rend. Ist. Mat. Univ. Trieste to appearGoogle Scholar
  426. [426]
    Nauwelaerts, M.,Cartesian closed hull for (quasi-)metric spaces (revisited), Comment. Math. Univ. Carolin. 41 (2000), 559–573Google Scholar
  427. [427]
    Nauwelaerts, M., The hulls of the category of uniform approach spaces preprintGoogle Scholar
  428. [428]
    Nauwelaerts, M., Some Cartesian closed topological constructs of convergence-approach spaces, preprint Google Scholar
  429. [429]
    Nauwelaerts, M.,Some Cartesian closed topological constructs in the category of semi-approach uniform limit spaces, Acta Math. Hung. 88 (2000), 59–71 Google Scholar
  430. [430]
    Nedev, S.I., Generalized-metrizable spaces (Russian), C.R. Acad. Bulgare Sci. 20 (1967), 513–516 Google Scholar
  431. [431]
    Nielsen, R. and Sloyer, C., Quasi-uniformizability, Math. Ann. 182 (1969), 273–274Google Scholar
  432. [432]
    Niemytzki, V., Über die Axiome des metrischen Raumes, Math. Ann. 104 (1931), 666–671MathSciNetCrossRefGoogle Scholar
  433. [433]
    Norman, L.J., A sufficient condition for quasi-metrizability of a topological space, Portugal. Math. 26 (1967), 207–211MathSciNetMATHGoogle Scholar
  434. [434]
    O’Neill, S.J., Partial metrics, valuations and domain theory, in Papers on General Topology and Applications, Eleventh Summer Conference, Southern Maine, 1995, Annals New York Acad. Sci., vol. 806, 1996, 304–315MathSciNetGoogle Scholar
  435. [435]
    Papadopoulos, B.K., Ascoli’s theorem in a quiet quasi-uniform space, Panamerican Math. J. (4) 3 (1993), 19–22MATHGoogle Scholar
  436. [436]
    Papadopoulos, B.K., Quasi-uniform convergence on function spaces, Questions Answers Gen. Topology 12 (1994), 121–131MathSciNetMATHGoogle Scholar
  437. [437]
    Papadopoulos, B.K., (Quasi)-uniformities on the set of bounded maps, Internat. J. Math. Math. Sci. 17 (1994), 693–696MathSciNetMATHCrossRefGoogle Scholar
  438. [438]
    Papadopoulos, B.K., A note on the paper “Quasi-uniform convergence on function spaces”, Questions Answers Gen. Topology 13 (1995), 55–56MathSciNetMATHGoogle Scholar
  439. [439]
    Papadopoulos, B.K., Boundedness and (quasi-)uniform convergence, Math. Japonica 41 (1995), 565–571MATHGoogle Scholar
  440. [440]
    Pareek, C.M., Bitopological spaces and quasi-metric spaces, J. Univ. Kuwait Sci. 6 (1979), 1–7MathSciNetGoogle Scholar
  441. [441]
    Patty, C.W., Bitopological spaces, Duke Math. J. 34 (1967), 387–391MathSciNetMATHCrossRefGoogle Scholar
  442. [442]
    Pasquale, A., Hypertopologies induced by scales of functional kind, Boll. U.M.I. (7) 7-B (1993), 431–449Google Scholar
  443. [443]
    Pérez-Penalver, M.J. and Romaguera, S., On right K-completeness of the fine quasi-uniformity, Questions Answers Gen. Topology 14 (1996), 245–249MathSciNetMATHGoogle Scholar
  444. [444]
    Pérez-Penalver, M.J., Weakly Cauchy filters and quasi-uniform completeness, Acta Math. Hung. 82 (1999), 217–228MATHCrossRefGoogle Scholar
  445. [445]
    Pérez-Penalver, M.J., Cofinal bicompleteness and quasi-metrizability, Rencl. Inst. Mat. Univ. Trieste 30 Suppl. (1999), 165–172Google Scholar
  446. [446]
    Pervin, W.J., Quasi-uniformization of topological spaces, Math. Ann. 147 (1962), 316–317MathSciNetMATHCrossRefGoogle Scholar
  447. [447]
    Pérez-Penalver, M.J., Quasi-proximities for topological spaces, Math. Ann. 150 (1963), 325–326Google Scholar
  448. [448]
    Pervin, W.J. and Sieber, J.L., Completeness in quasi-uniform spaces, Math. Ann. 158 (1965), 79–81MathSciNetMATHCrossRefGoogle Scholar
  449. [449]
    Picado, J. Weil uniformities for frames, Comment. Math. Univ. Carol. 36 (1995), 357–370Google Scholar
  450. [450]
    Picado, J., Frame quasi-uniformities, Proc. Symposium on Categorical Topology, University of Cape Town 1994, B. Banaschewski, C.R.A. Gilmour and H. Herrlich (eds.), Dept. Math., University of Cape Town 1999, 161–175Google Scholar
  451. [451]
    Pol, R., A perfectly normal locally metrizable non-paracompact space, Fund. Math. 97 (1977), 37–42MathSciNetGoogle Scholar
  452. [452]
    Popa, E., Completion of quasi-uniform spaces, Math. Ann. 186 (1970), 297–298MathSciNetMATHCrossRefGoogle Scholar
  453. [453]
    Porter, K.F. Semi-reasonable topologies for homeomorphism groups, Houston J. Math. 17 (1991), 367–373MathSciNetMATHGoogle Scholar
  454. [454]
    Porter, K.F., The open-open topology for function spaces, Internat. J. Math. Math. Sci. 16 (1993), 111–116Google Scholar
  455. [455]
    Porter, K.F., The regular open-open topology for function spaces, Internat. J. Math. Math. Sci. 19 (1996), 299–302Google Scholar
  456. [456]
    Porter, K.F., Some equivalent topologies on homeomorphism groups, Topology Proc. 22 (Summer 1997 ), 373–383Google Scholar
  457. [457]
    Priess-Crampe, S. and Ribenboim, P., Generalized ultrametric spaces I, II, Abh. Math. Sem. Hamburg 66 (1996), 55–73; 67 (1997), 19–31MathSciNetMATHCrossRefGoogle Scholar
  458. [458]
    Priestley, H.A., Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc. 24 (1972), 507–530MathSciNetMATHCrossRefGoogle Scholar
  459. [459]
    Raghavan, T.G., On quasi-metrizability, Indian J. Pure Appl. Math. 15 (1984), 1084–1089MathSciNetMATHGoogle Scholar
  460. [460]
    Raghavan, T.G. and Reilly, I.L., Metrizability of quasi-metric spaces, J. London Math. Soc. 15 (1977), 169–172Google Scholar
  461. [461]
    Raghavan, T.G. and Reilly, I.L., On non-symmetric topological structures, Colloquia Math. Soc. Janos Bolyai, vol. 23, Topology, Budapest (Hungary) 1978, pp. 1005–1014Google Scholar
  462. [462]
    Raghavan, T.G. and Reilly, I.L., On the continuity of group operations, Indian J. Pure Appl. Math. 9 (1978), 747–752MathSciNetMATHGoogle Scholar
  463. [463]
    Raghavan, T.G. and Reilly, I.L., Uniformization of quasi-uniform spaces, Bull. Austral. Math. Soc. 23 (1981), 413–422Google Scholar
  464. [464]
    Raghavan, T.G. and Reilly, I.L., A new bitopological paracompactness, J. Austral. Math. Soc. (Ser. A) 41 (1986), 268–274Google Scholar
  465. [465]
    Raghavan, T.G. and Reilly, I.L., Characterization of quasi-metrizable bitopological spaces, J. Austral. Math. Soc. (Ser. A) 44 (1988), 271–274Google Scholar
  466. [466]
    Redfield, R.H., Ordering uniform completions of partially ordered sets, Canad. J. Math. 26 (1974), 644–664Google Scholar
  467. [467]
    Redfield, R.H., Uniformly convex totally ordered sets, Proc. Amer. Math. Soc. 51 (1975), 289–294MathSciNetMATHCrossRefGoogle Scholar
  468. [468]
    Reichel, H.-C., Basis properties of topologies compatible with (not necessarily symmetric) distance functions, Topology Appl. 8 (1978), 283–289MathSciNetMATHCrossRefGoogle Scholar
  469. [469]
    Reilly, I.L., On generating quasi-uniformities, Math. Ann. 189 (1970), 317–318MathSciNetMATHCrossRefGoogle Scholar
  470. [470]
    Reilly, I.L., Quasi-gauge spaces, J. London Math. Soc. 6 (1973), 481–487 Google Scholar
  471. [471]
    Reilly, I.L., Zero dimensional bitopological spaces, Nederl. Akad. Wetensch. Proc. Ser. A 76 = Indag. Math. 35 (1973), 127–133MathSciNetGoogle Scholar
  472. [472]
    Reilly, I.L., A generalized contraction principle, Bull. Austral. Math. Soc. 10 (1974), 359–363MathSciNetMATHCrossRefGoogle Scholar
  473. [473]
    Reilly, I.L., A note on quasi-metric spaces, Proc. Japan Acad. 52 (1976), 428–430MathSciNetMATHCrossRefGoogle Scholar
  474. [474]
    Reilly, I.L., A quasi-metric bibliography, The University of Auckland, Dept. Math. Stat., Report Series No. 269, June 1992, New ZealandGoogle Scholar
  475. [475]
    Reilly, I.L. and Subrahmanyam, P.V., Some fixed point theorems, J. Austral. Math. Soc. (Ser. A) 53 (1992), 304–312Google Scholar
  476. [476]
    Reilly, I.L., Subrahmanyam, P.V. and Vamanamurthy, M.K., Cauchy sequences in quasi-pseudo-metric spaces, Monatsh. Math. 93 (1982), 127–140MathSciNetMATHCrossRefGoogle Scholar
  477. [477]
    Reilly, I.L. and Vamanamurthy, M.K., On oriented metric spaces, Math. Slovaca 34 (1984), 299–305MathSciNetMATHGoogle Scholar
  478. [478]
    Reinhold, J., Semilattices of ordered compactifications, Order 14 (1997–1998), 279–294Google Scholar
  479. [479]
    Render, H., Nonstandard methods of completing quasi-uniform spaces, Topology Appl. 62 (1995), 101–125MathSciNetMATHCrossRefGoogle Scholar
  480. [480]
    Render, H., Hausdorff completions of quasi-uniform spaces, Czechoslovak Math. J. 46 (121) (1996), 309–316MathSciNetMATHGoogle Scholar
  481. [481]
    Render, H., Generalized uniform spaces and applications to function spaces, Studia Sci. Math. Hung. 34 (1998), 429–443MathSciNetMATHGoogle Scholar
  482. [482]
    Reznichenko, E.A., Extension of functions defined on products of pseudocompact spaces and continuity of the inverse in pseudocompact groups, Topology Appl. 59 (1994), 233–244MathSciNetMATHCrossRefGoogle Scholar
  483. [483]
    Rhoades, B.E., Some fixed point theorems in quasi-metric spaces, Demonstr. Math. 30 (1997), 301–305MathSciNetMATHGoogle Scholar
  484. [484]
    Ribeiro, H., Sur les espaces à métrique faible, Port. Math. 4 (1943), 21–40; Correction à la note “Sur les espaces à métrique faible”, ibid. 65–68Google Scholar
  485. [485]
    Richardson, G.D., R1, pairwise compact, and pairwise complete spaces, Canad. Math. Bull. 15 (1972), 109–113MathSciNetMATHCrossRefGoogle Scholar
  486. [486]
    Rodriguez-López, J. and Romaguera, S., Reconciling proximal convergence with uniform convergence in quasi-metric spaces, Houston J. Math. to appearGoogle Scholar
  487. [487]
    Romaguera, S., Two characterizations of quasi-pseudometrizable bitopological spaces, J. Austral. Math. Soc. (Ser. A) 35 (1983), 327–333MathSciNetMATHCrossRefGoogle Scholar
  488. [488]
    Romaguera, S., On bitopological quasi-pseudometrization, J. Austral. Math. Soc. (Ser. A) 36 (1984), 126–129MathSciNetMATHCrossRefGoogle Scholar
  489. [489]
    Romaguera, S., A characterization of strongly quasi-metrizable spaces, Math. Japonica 33 (1988), 583–585MathSciNetMATHGoogle Scholar
  490. [490]
    Romaguera, S., On continuously quasi-metrizable spaces, Math. Japonica 34 (1989), 417–419MathSciNetMATHGoogle Scholar
  491. [491]
    Romaguera, S., On equinormal quasi-metrics, Proc. Edinburgh Math. Soc. 32 (1989), 193–196MathSciNetMATHCrossRefGoogle Scholar
  492. [492]
    Romaguera, S., Left K-completeness in quasi-metric spaces, Math. Nachr. 157 (1992), 15–23MathSciNetMATHCrossRefGoogle Scholar
  493. [493]
    Romaguera, S., g-bifunctions and quasi-pseudometrization, Math. Japonica 37 (1992), 337–340Google Scholar
  494. [494]
    Romaguera, S., On complete Aronszajn quasi-metric spaces and subcompactness, in Papers on General Topology and Applications, Eighth Summer Conf. Queens College, 1992, Annals New York Acad. Sci., vol. 728, 1994, 114–121MathSciNetGoogle Scholar
  495. [495]
    Romaguera, S., An example on quasi-uniform convergence and quiet spaces, Questions Answers Gen. Topology 13 (1995), 169–171MathSciNetMATHGoogle Scholar
  496. [496]
    Romaguera, S., On hereditary precompactness and completeness in quasi-uniform spaces, Acta Math. Hung. 73 (1996), 159–178MathSciNetMATHCrossRefGoogle Scholar
  497. [497]
    Romaguera, S., Quasi-metrizability of the finest quasi-proximity, Publ. Math. Debrecen 56 (2000), 145–169MathSciNetMATHGoogle Scholar
  498. [498]
    Romaguera, S., A new class of quasi-uniform spaces, Math. Pannonica (1) 11 (2000), 17–28MathSciNetMATHGoogle Scholar
  499. [499]
    Romaguera, S., Almost 2-fully normal, pairwise paracompact and complete developable bispaces, Quaestiones Math to appearGoogle Scholar
  500. [500]
    Romaguera, S. and Ruiz-Gómez, M., Bitopologies and quasi-uniformities on spaces of continuous functions I, II, Publ. Math. Debrecen 47 (1995), 81–93 and 50 (1997), 1–15MATHGoogle Scholar
  501. [501]
    Romaguera, S. and Salbany, S., Quasi-metrization and hereditary normality of compact bitopological spaces, Comment. Math. Univ. Carol. 31 (1990), 113–122Google Scholar
  502. [502]
    Romaguera, S. and Salbany, S., On countably compact quasi-pseudometrizable spaces, J. Austral. Math. Soc. (Ser. A) 49 (1990), 231–240MathSciNetMATHCrossRefGoogle Scholar
  503. [503]
    Romaguera, S. and Salbany, S., Quasi-metrizable spaces with a bicomplete structure, Extracta Math. 7 (1992), 99–102MathSciNetGoogle Scholar
  504. [504]
    Romaguera, S. and Salbany, S., On bicomplete quasi-pseudometrizability, Topology Appl. 50 (1993), 283–289MathSciNetMATHCrossRefGoogle Scholar
  505. [505]
    Romaguera, S. and Salbany, S., Extending a Bicomplete Quasi-metric, Proc. Symposium on Categorical Topology, University of Cape Town 1994, B. Banaschewski, C.R.A. Gilmour and H. Herrlich (eds.), Dept. Math., University of Cape Town 1999, 215–223Google Scholar
  506. [506]
    Romaguera, S. and Salbany, S., Dieudonné complete bispaces, Studia Sci. Math. Hung. 36 (2000), 407–421Google Scholar
  507. [507]
    Romaguera, S. and Sanchis, M., Semi-Lipschitz functions and best approximation in quasi-metric spaces, J. Approx. Theory 103 (2000), 292–301MathSciNetMATHCrossRefGoogle Scholar
  508. [508]
    Romaguera, S. and Schellekens, M., Quasi-metric properties of complexity spaces, Topology Appl. 98 (1999), 311–322MathSciNetMATHCrossRefGoogle Scholar
  509. [509]
    Romaguera, S. and Schellekens, M., Duality and quasi-normability for complexity spaces preprintGoogle Scholar
  510. [510]
    Romaguera, S. and Schellekens, M., The quasi-metric of complexity convergence, Quaestiones Math. 23 (2000), 359–374MathSciNetMATHCrossRefGoogle Scholar
  511. [511]
    Romaguera, S. and Schellekens, M., Cauchy filters and strong completeness of quasi-uniform spaces, Rostock. Math. Kolloq. to appaerGoogle Scholar
  512. [512]
    Romaguera, S. and Schellekens, M., Norm-weightable Riesz spaces and the dual complexity space preprintGoogle Scholar
  513. [513]
    Romaguera, S. and Tarrés, J., Dimension of quasi-metrizable spaces and bicompleteness degree, Extracta Math. 8 (1993), 39–41MathSciNetMATHGoogle Scholar
  514. [514]
    Rutten, J.J.M.M., Elements of generalized ultrametric domain theory, Theoretical Computer Science 170 (1996), 349–381MathSciNetMATHGoogle Scholar
  515. [515]
    Rutten, J.J.M.M., Weighted colimits and formal balls in generalized metric spaces, Topology Appl. 89 (1998), 179–202MathSciNetMATHCrossRefGoogle Scholar
  516. [516]
    Salbany, S., Quasi-uniformities and quasi-pseudometrics, Math. Colloq. Univ. Cape Town 6 (1970–71), 88–102Google Scholar
  517. [517]
    Salbany, S., Quasi-metrization of bitopological spaces, Arch. Math. (Basel) 23 (1972), 299–306MathSciNetMATHCrossRefGoogle Scholar
  518. [518]
    Salbany, S., Bitopological Spaces, Compactifications and Completions, Math. Monographs, No. 1, Dept. Math. Univ. Cape Town 1974Google Scholar
  519. [519]
    Salbany, S., A bitopological view of topology and order, Categorical topology (Proc. Toledo, Ohio, 1983), Heldermann, Berlin, 1984, pp. 481–504Google Scholar
  520. [520]
    Salbany, S., Unique quasi-uniformities, General topology and its relations to modern analysis and algebra, VI, Proc. 6th Symp., Prague/Czech. 1986, Res. Expo. Math., vol. 16 (1988), pp. 497–508MathSciNetGoogle Scholar
  521. [521]
    Salbany, S., Injective objects and morphisms, in Categorical Topology and its Rela- tion to Analysis, Algebra and Combinatorics (Prague, 1988), J. Adâmek and S. MacLane (eds.), World Sci. Publishing, Teaneck, NJ 1989, 394–409Google Scholar
  522. [522]
    Salbany, S., Linearly ordered topologies and quasi-metrization, in Papers on Gen- eral Topology and Applications, Ninth Summer Conference at Slippery Rock University, 1993, Annals New York Acad. Sci., vol. 767, 1995, 217–227MathSciNetGoogle Scholar
  523. [523]
    Salbany, S., On even quasimetrization, Proc. Symposium on Categorical Topology, University of Cape Town 1994, B. Banaschewski, C.R.A. Gilmour and H. Herrlich (eds.), Dept. Math., University of Cape Town (1999), 225–236Google Scholar
  524. [524]
    Salbany, S. and Todorov, T., Nonstandard and standard compactifications of ordered topological spaces, Topology Appl. 47 (1992), 35–52MathSciNetMATHCrossRefGoogle Scholar
  525. [525]
    Samuel, P., Ultrafilters and compactifications of uniform spaces, Trans. Amer. Math. Soc. 64 (1948), 100–132MathSciNetMATHCrossRefGoogle Scholar
  526. [526]
    Schauerte, A., Functorial quasi-uniformities over partially ordered spaces, M.Sc. Thesis, Univ. Cape Town, 1988Google Scholar
  527. [527]
    Schellekens, M., The Smyth Completion: a Common Foundation for Denotational Semantics and Complexity Analysis: in Proc. MFPS 11, Electronic Notes in Theoretical Computer Science, vol. 1, 1995. URL: http://www.elsevier.n1/10cate/entcs/volumel.htmlGoogle Scholar
  528. [528]
    Schauerte, A., Complexity Spaces Revisited, Proceedings of the 8th Prague topological symposium, Prague, Simon, Petr. (ed.) Czech Republic, 1996, North Bay, ON: Topology Atlas (1997) URL: http://at.yorku.ca/p/p/a/a/00.htmGoogle Scholar
  529. [529]
    Schauerte, A., On upper weightable spaces, in Papers on General Topology and Ap- plications, Eleventh Summer Conference, Southern Maine 1995, Annals New York Acad. Sci., vol. 806, 1996, 348–363Google Scholar
  530. [530]
    Schauerte, A., Complexity spaces: Lifting and directedness, Topology Proc. 22 (Summer 1997 ), 403–425Google Scholar
  531. [531]
    Schauerte, A., The correspondence between partial metrics and semivaluations; M-spaces: an abstract study of the lifting process; A characterization of partials matrizability preprintsGoogle Scholar
  532. [532]
    Schwarz, F. and Weck-Schwarz, S., Is every partially ordered space with a completely regular topology already a completely regular partially ordered space? Math. Nachr. 161 (1993), 199–201MathSciNetMATHCrossRefGoogle Scholar
  533. [533]
    Scott, B.M., Toward a product theory for orthocompactness, Studies in topology, Proc. Conf. Univ. North Carolina, Charlotte, N.C. 1974, Academic Press, New York 1975, pp. 517–537Google Scholar
  534. [534]
    Scott, B.M., More about orthocompactness, Topology Proc. 5 (1980), 155–184MathSciNetGoogle Scholar
  535. [535]
    Seyedin, M., Quasi-uniform spaces and topological homeomorphism groups, Canad. Math. Bull. 17 (1974), 97–98MathSciNetMATHCrossRefGoogle Scholar
  536. [536]
    Seyedin, M., R3-quasi-uniform spaces and topological homeomorphism groups, Proc. Amer. Math. Soc. 52 (1975), 465–468MathSciNetMATHGoogle Scholar
  537. [537]
    Seyedin, M., On quasiuniform convergence, in General Topology and its Relations to Modern Analysis and Algebra, IV, Proc. Fourth Prague Topological Symposium, 1976, Part B, Prague 1977, 425–429Google Scholar
  538. [538]
    Shchepin, E.V., On topological products, groups, and a new class of spaces more general than metric spaces, Sou Math. Dokl. 17 (1976), 152–155MATHGoogle Scholar
  539. [539]
    Shi, F., Pointwise quasi-uniformities and pseudo-quasi-metrics on completely distributive lattices (Chinese), Acta Math. Sin. 39 (1996), 701–706MATHGoogle Scholar
  540. [540]
    Shi, F., Pointwise quasi-uniformities on completely distributive lattices, Ad- vances in Math. 26 (1997), 22–28MATHGoogle Scholar
  541. [541]
    Simmons, H. A couple of triples, Topology Appl. 13 (1982), 201–223Google Scholar
  542. [542]
    Sioen, M., The tech-Stone compactification for Hausdorff uniform approach spaces is of Waliman-Shanin-type, Questions Answers Gen. Topology 16 (1998), 189–211MathSciNetMATHGoogle Scholar
  543. [543]
    Sioen, M., On the epireflectivity of the Wallman-Shanin-type compactification for approach spaces, Appl. Categ. Struct. 8 (2000), 607–637MathSciNetMATHCrossRefGoogle Scholar
  544. [544]
    Sion, M. and Willmott, R.C., Hausdorff measures on abstract spaces, Trans. Amer. Math. Soc. 123 (1966), 275–309Google Scholar
  545. [545]
    Sion, M. and Zelmer, G., On quasi-metrizability, Canad. J. Math. 19 (1967), 1243–1249MathSciNetMATHCrossRefGoogle Scholar
  546. [546]
    Skula, L., On a reflective subcategory of the category of all topological spaces, Trans. Amer. Math. Soc. 142 (1969), 37–41Google Scholar
  547. [547]
    Smyth, M.B., Quasi-uniformities: Reconciling domains with metric spaces, in Mathematical Foundations of Programming Language Semantics, 3rd Work-shop, Tulane 1987, Lecture Notes Computer Science, vol. 298, M. Main et al. (eds.), Springer, Berlin 1988, 236–253Google Scholar
  548. [548]
    Smyth, M.B., Totally bounded spaces and compact ordered spaces as domains of computation, in Topology and Category Theory in Computer Science, G.M. Reed, A.W. Roscoe and R.F. Wachter (eds.), Clarendon Press, Oxford 1991, 207–229Google Scholar
  549. [549]
    Smyth, M.B.Stable compactification I, J. London Math. Soc. 45 (1992), 321–340Google Scholar
  550. [550]
    Smyth, M.B.Completeness of quasi-uniform and syntopological spaces, J. London Math. Soc. 49 (1994), 385–400Google Scholar
  551. [551]
    Sontag, E., An abstract approach to dissipation, preprint; for a summarized version see Proc IEEE Conf. Decision and Control, New Orleans, Dec. 1995, IEEE Publications, 1995, pp. 2702–2703Google Scholar
  552. [552]
    ostak, A.P., Fuzzy syntopogeneous structures, Quaestiones Math. 20 (1997), 431–461MathSciNetCrossRefGoogle Scholar
  553. [553]
    Steiner, E.F., The relation between quasi-proximities and topological spaces, Math. Ann. 155 (1964), 194–195MathSciNetMATHCrossRefGoogle Scholar
  554. [554]
    Stoltenberg, R.A., Some properties of quasi-uniform spaces, Proc. London Math. Soc. 17 (1967), 226–240Google Scholar
  555. [555]
    Stoltenberg, R.A., Completion for quasi-uniform spaces, Proc. Amer. Math. Soc. 18 (1967), 864–867MathSciNetMATHCrossRefGoogle Scholar
  556. [556]
    Stoltenberg, R.A., On quasi-metric spaces, Duke Math. J. 36 (1969), 65–71MathSciNetMATHCrossRefGoogle Scholar
  557. [557]
    Sünderhauf, P., The Smyth-completion of a quasi-uniform space, in Semantics of Programming Languages and Model Theory, M. Droste and Y. Gurevich (eds.), “Algebra, Logic and Applications”, Gordon and Breach Sci. Publ., New York 1993, 189–212Google Scholar
  558. [558]
    Stoltenberg, R.A., Discrete Approximation of Spaces. A Uniform Approach to Topologically Structured Datatypes and Their Function Spaces, Dissertation, Darmstadt 1994 Google Scholar
  559. [559]
    Stoltenberg, R.A., Quasi-uniform completeness in terms of Cauchy nets Acta Math. Hung. 69 (1995), 47–54Google Scholar
  560. [560]
    Stoltenberg, R.A., Constructing a quasi-uniform function space Topology Appl. 67 (1995), 1–27Google Scholar
  561. [561]
    Stoltenberg, R.A., Smyth completeness in terms of nets: the general case, Quaestiones Math. 20 (1997), 715–720Google Scholar
  562. [562]
    Stoltenberg, R.A., Tensor products and powerspaces in quantitative domain theory Elec- tronic Notes in Theoretical Computer Science, vol. 6, Elsevier, Amsterdam, 1997. URL: http://www.elsevier.nl/locate/entcs/volume6.htmlGoogle Scholar
  563. [563]
    Stoltenberg, R.A., Spaces of valuations as quasimetric domains Electronic Notes in Theoretical Computer Science, vol. 13, Elsevier, Amsterdam, 1998. URL: http://www.elsevier.nl/locate/entcs/volume13.htmlGoogle Scholar
  564. [564]
    Stoltenberg, R.A., Function spaces for uniformly locally bounded quasi-uniform spaces, Proc. Symposium on Categorical Topology, University of Cape Town 1994, B. Banaschewski, C.R.A. Gilmour and H. Herrlich (eds.), Dept. Math., University of Cape Town 1999, 237–247Google Scholar
  565. [565]
    Szâz, A., Basic tools and mild continuities in relator spaces, Acta Math. Hung. 50 (1987), 177–201MATHCrossRefGoogle Scholar
  566. [566]
    van Douwen, E.K., An easier superrigid countable T1-space Topology Appl. 34 (1990), 93–95Google Scholar
  567. [567]
    van Douwen, E.K. and Wicke, H.H., A real, weird topology on the reals Houston J. Math. 3 (1977), 141–152Google Scholar
  568. [568]
    van Gool, F., Lower semicontinuous functions with values in a continuous lattice Comment. Math. Univ. Carol. 33 (1992), 505–523Google Scholar
  569. [569]
    Vaughan, J.E., A countably compact, first countable, nonnormal T2-spac Proc. Amer. Math. Soc. 75 (1979), 339–342Google Scholar
  570. [570]
    Velicko, N.V.Quasi-uniformly sequential spaces (Russian) C.R. Acad. Bulgare Sci. 25 (1972), 589–591Google Scholar
  571. [571]
    Verbeeck, C., The category of pre-approach spaces, Doctoral Thesis, Universiteit Antwerpen, 2000Google Scholar
  572. [572]
    Vickers, S.J., Localic completion of quasimetric spaces, Technical Report DoC 97/2, Department of Computing, Imperial College, London, 1997Google Scholar
  573. [573]
    Vitolo, P., A representation theorem for quasi-metric spaces Topology Appl. 65 (1995), 101–104Google Scholar
  574. [574]
    Votaw, C.Uniqueness of compatible quasi-uniformities Canad. Math. Bull. 15 (1972), 575–583Google Scholar
  575. [575]
    Wang, G.Theory of topological molecular lattices Fuzzy Sets Syst. 47 (1992), 351–376Google Scholar
  576. [576]
    Ward, A.J., A generalization of almost-compactness, with an associated generalization of completeness Czechoslovak Math. J. 25(100) (1975), 514–530Google Scholar
  577. [577]
    Watson, S.The classification of metrics and multivariate statistical analysis Topology Appl. 99 (1999), 237–261Google Scholar
  578. [578]
    Weber, H., Uniform lattices I: A generalization of topological Riesz spaces and topological Boolean rings; Uniform lattices II: Order continuity and exhaustivity, Annali Mat. Pura Appl. 160 (1991), 347–370; 164 (1993), 133–158Google Scholar
  579. [579]
    Williams, J. Locally uniform spaces Trans. Amer. Math. Soc. 168 (1972), 435–469Google Scholar
  580. [580]
    Wilson, W.A. On quasi-metric spaces Amer. J. Math. 53 (1931), 675–684Google Scholar
  581. [581]
    Windels, B. Uniform Approach Theory Doctoral Thesis, Universiteit Antwerpen, 1997Google Scholar
  582. [582]
    Windels, B., The Scott approach structure: an extension of the Scott topology for quantitative domain theory, Acta Math. Hung. 88 (2000), 35–44MathSciNetMATHCrossRefGoogle Scholar
  583. [583]
    Windels, B., On the metrization lemma for uniform spaces, Quaestiones Math. to appearGoogle Scholar
  584. [584]
    Woods, R.G.Topological extension properties Trans. Amer. Math. Soc. 210 (1975), 365–385Google Scholar
  585. [585]
    Wu, C. and Wu, J., Fuzzy quasi-uniformities and fuzzy bitopological spaces, Fuzzy Sets Syst. 46 (1992), 133–137Google Scholar
  586. [586]
    Wyler, O., Compact ordered spaces and prime Waliman compactifications, in Categorical Topology, Heldermann, Berlin 1984, pp. 618–635Google Scholar
  587. [587]
    Yajima, Y. A characterization of submetacompactness in terms of products Proc. Amer. Math. Soc. 112 (1991), 291–296Google Scholar
  588. [588]
    Yang, L., Pointwise quasi-uniformities on completely distributive lattices (Chinese), J. Math. Res. Expo. 8 (1988), 187–194MATHGoogle Scholar
  589. [589]
    Zaustinsky, E.M.Spaces with non-symmetric distance Memoirs Amer. Math. Soc. 34 (1959)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Hans-Peter A. Künzi
    • 1
  1. 1.Department of Mathematics and Applied MathematicsUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations