Biophotons — Background, Experimental Results, Theoretical Approach and Applications

  • Fritz-Albert Popp


As an outstanding developmental biologist of the third decade of the 20th century, the Russian scientist Alexander Gurwitsch [1, 2] tried to solve one of the most crucial problems of the life sciences, i.e. the “Gestaltbildungs” — problem, which is the question of how living tissues transform and transfer information about the size and shape of different organs. Since chemical reactions do not contain spatial or temporal patterns a priori, Gurwitsch claimed that a “morphogenetic field” is responsible for the regulation of cell growth. In particular, in his so-called “Grundversuch” (“basic experiment”), he found ample indication for the involvement of photons in the stimulation of cell division. Fig. 1 displays this famous “Grundversuch” of A. Gurwitsch.


Coherent State Living System Coherence Time Maximum Entropy Principle Potential Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gurwitsch, A. (1922) Über Ursachen der Zellteilung. W.Roux’ Arch., 52.Google Scholar
  2. 2.
    A.Gurwitsch, (1932) Die Mitogenetische Strahlung. Monographien aus dem Gesamtgebiet der Physiologie der Pflanzen und der Tiere. J.Springer, Bd. 25, Berlin.Google Scholar
  3. 3.
    Reiter, T und Gabor, D (1928) Zellteilung und Strahlung. Sonderheft der Wissenschaftlichen Veröffentlichungen aus dem Siemens-Konzern. J.Springer, Berlin.Google Scholar
  4. 4.
    Ruth, B (1977) Experimenteller Nachweis Ultraschwacher Photonenemission aus biologischen Systemen. Dissertation, Universität Marburg.Google Scholar
  5. 5.
    Slawinski, J. (1988) Biophoton Emission (Multi-author Review). Experientia, 44, 559–571.CrossRefGoogle Scholar
  6. 6.
    Inaba, H. (1988) Biophoton Emission (Multi-author Review). Experientia, 44, 550–559.CrossRefGoogle Scholar
  7. 7.
    Boveris, A., Varsaysky, A.I., Da Silva, S.G. and Sanchez, R.A. (1983) Photochem.Photobiol, 38, 99–104.CrossRefGoogle Scholar
  8. 8.
    Quickenden T.I. and Tilbury, R.N. (1983) Photochem.Photobiol, 38, 337–344.CrossRefGoogle Scholar
  9. 9.
    Zhuravlev, A.I. (ed.) (1983) Biochemiluminescence. USSR Academy of Sci. and Moscow soc. Nature, vol.58, Nauka Publ. House, Moscow, 210–222.Google Scholar
  10. 10.
    Seliger, H.H. (1973) Chemiluminescence and Bioluminescence. Cormier, M.J., Hercules, D.M. and Lee, J. (eds.), Plenum Press, New York, 461–478.Google Scholar
  11. 11.
    Popp, F.A. (1976) Molecular Aspects of Carcinogenesis. E.Deutsch, K.Moser, H.Rainer and A. Stacher, (eds.), Thieme Verlag, Stuttgart, 47–55.Google Scholar
  12. 12.
    Popp, F.A. (1974) Archiv für Geschwulstforschung, 44, 295–306.Google Scholar
  13. 13.
    Ruth, B. und Popp, F.A. (1976) Z. Naturforsch, 31c, 741–745.Google Scholar
  14. 14.
    Ruth, B. (1979) Electromagnetic Bio-Information. Popp, F.A., Becker, G., König, H.L., Peschka, W. (eds.), Urbau & Schwarzenberg, München, 107–122.Google Scholar
  15. 15.
    Popp, F.A., Ruth, B., Bahr, W., Böhm, J., Grass, P., Grolig, G., Rattemeyer, M., Schmidt, H.G., Wulle, P. (1981) Collective Phenomena, 3, 187–214.Google Scholar
  16. 16.
    Popp, F.A., Gu, Q. and Li, K.H. (1994) Modern Physics Letters B,vol. 8., 1269–1296.Google Scholar
  17. 17.
    Popp, F.A., Li, K.H. and Gu, Q. (1992) Recent Advances in Biophoton Research and its Applications. World Scientific, Singapore.Google Scholar
  18. 18.
    Chang, J.J. and Popp, F.A. (1998) Biophotons. Chang, J.J., Fisch, J. and Popp, F.A. (eds.), Kluwer Academic Publishers, Dordrecht, 217–237.Google Scholar
  19. 19.
    Popp, F.A., Nagl, W., Li, K.H., Scholz, W., Weingärtner, O., Wolf, R. (1984) Cell Biophysics, 6, 33–51.Google Scholar
  20. 20.
    Slawinski, J. and Popp, F.A. (1987)J.PI.Physiol, 130, 111–123.Google Scholar
  21. 21.
    Rattemeyer, M., Popp, F.A. and Nagl, W. (1981) Naturwissenschaften, 11, 572–573.ADSCrossRefGoogle Scholar
  22. 22.
    Chwirot, B. (1986) J. Pl. Physiol., 122, 81–86.CrossRefGoogle Scholar
  23. 23.
    Popp, F.A. and Li, K.H. (1993) Int.J.Theor.Phys., 32, 1573–1583.CrossRefGoogle Scholar
  24. 24.
    Perina, J. (1985) Coherence of Light. D. Reidel, Dordrecht.Google Scholar
  25. 25.
    Bajpai, R.P. (1999) J. theor.Biol. 198, 287–299.CrossRefGoogle Scholar
  26. 26.
    Popp, F.A. (1979) Electromagnetic Bio-Information. Popp, F.A., Becker, G., König, H.L. and Peschka, W. (eds.), Urban & Schwarzenberg, München, 123–149.Google Scholar
  27. 27.
    Popp, F.A. (1988) Biophoton Emission. Popp, F.A., Gurwitsch, A.A. Inaba, H., Slawinski, J.,Cilento, G., Li, K.H., van Wijk, R., Chwirot, W.B. and Nagl, W. (eds.), Experientia (Multi-author Review), 44, 576–585.Google Scholar
  28. 28.
    Popp, F.A. and Nagl, W. (1986) Polymer Bull, 15, 89–91.CrossRefGoogle Scholar
  29. 29.
    Popp, F.A. and Chang, J.J. (2000) Science in China (C), 43, 507–518.CrossRefGoogle Scholar
  30. 30.
    Popp, F.A. (2000) Biophotonics and Coherent Systems. Beloussov, L., Popp, F.A., Voeikov V. and van Wijk, R. (eds.), Moscow University Press, 117–133.Google Scholar
  31. 31.
    Dicke, R.H. (1954)Phys.Rev. 93 99–110.Google Scholar
  32. 32.
    Galle, M. (1993) Dissertation. Universität Saarbrücken.Google Scholar
  33. 33.
    Galle, M., Neurohr, R., Altmann, G., Popp, F.A. and Nagl, W. (1991) Experientia, 47, 457–460.CrossRefGoogle Scholar
  34. 34.
    Schamhart, D.H.J. and van Wijk, R. (1987) Photon emission from biological systems. Jezowska-Trzebiatowska, B., Kochei, B. and Slawinski, J. (eds.), World Scientific, Singapore, 137–152.Google Scholar
  35. 35.
    Scholz, W., Staszkiewicz, U., Popp, F.A. and Nagl, W. (1988) Cell Biophysics, 13 55–63.Google Scholar
  36. 36.
    Popp, F.A., Chang, J.J., Gu, Q. and Ho, M.W. (1994) Bioelectrodynamics and Biocommunication. Ho, M.W., Popp, F.A. and Warnke, U (eds.), World Scientific, Singapore, 293–317.Google Scholar
  37. 37.
    Vogel, R. and Süßmuth, R. (1998) Bioelectrochemistry and Bioenergetics, 45, 93–101.CrossRefGoogle Scholar
  38. 38.
    Etienne, J.J., Popp, F.A., Papaconstantin, E. and Niggli, H. (1992) Low Level Luminescence of Acetabularia Acetabulum as a tool for Evaluating the Quality of Cosmetic Ingredients. Proceedings 17`“ IFSCC International Congress, Yokohama (Japan), October 13–16.Google Scholar
  39. 39.
    Yan, Y (2000) Biophoton Emission and Germination Capacity of Barley Seeds. In Biophotonics and Coherent Systems, Beloussov, L., Popp, F.A., Voeikov, V. and van Wijk, R. ( eds. ), Moscow University Press, 431–438.Google Scholar
  40. 40.
    Köhler, B., Lambing, K., Neurohr, R., Nagl, W., Popp F.A. and Wahler, J. (1991) Deutsche Lebensmittel-Rundschau, 82, 78–83.Google Scholar
  41. 41.
    Cohen, S. and Popp, F.A. (1997) J.Photochem.Photobiol. B: Biology, 40, 187–189.Google Scholar
  42. 42.
    Schrödinger, E. (1987) Was ist Leben? Piper Verlag, München.Google Scholar
  43. 43.
    Prigogine, I. (1976) Order through fluctuation: Self-organization and social systems. Evolution and Consciousness. Jantsch, E. and Waddington, CH., (eds.), Addison + Wesley P.C., Reading.Google Scholar
  44. 44.
    Fröhlich, H. (1968) Long-range coherence and energy storage in biological systems. Int.J.Quantum Chem, 2, 641–649.ADSCrossRefGoogle Scholar
  45. 45.
    Slawinski, J. and Popp, F.A. (1987) Temperature hysteresis of low level luminescence from plants and its thermodynamical analysis. J.P1.Physiol, 130, 111–123.CrossRefGoogle Scholar
  46. 46.
    Perina, J. (1971) Coherence of Light. D.Reidel P.C., Dordrecht.Google Scholar
  47. 47.
    Arrechi, F.T. (1969) Photocount Distributions and Field Statistics. Ottica quantistica (Quantum Optics), Glauber, R.J. (ed.), Academic Press, New York.Google Scholar
  48. 48.
    Popp, F.A. and Li, K.H. (1993) Hyperbolic relaxation as a sufficient condition of a fully coherent ergodic field. Int.J.Theor.Phy, 32, 1573.CrossRefGoogle Scholar
  49. 49.
    Popp, F.A. and Yan, Y. (2002) Delayed luminescence of biological systems in terms of coherent states. Phys.Lett.A, 293, 93–97.ADSCrossRefMathSciNetGoogle Scholar
  50. 50.
    Popp, F.A. et al. (2002) Evidence of non-classical (squeezed) light in biological systems. Phys.Lett.A, 293, 98–102.ADSCrossRefMathSciNetGoogle Scholar
  51. 51.
    Popp, F.A. and Chang, J.J. (2000) Mechanism of interaction between electromagnetic fields and living systems. Science in China (C), 43, 507–518.CrossRefGoogle Scholar
  52. 52.
    Popp, F.A. (1976) Biophotonen. Ein neuer Weg zur Lösung des Krebsproblems. Schriftenreihe Krebsgeschehen Bd. 6, Verlag für Medizin Dr. E. Fischer, Heidelberg.Google Scholar
  53. 53.
    Popp, F.A. (2001) Energieverteilung und Bewußtsein. Vortrag auf der Biosynthese-Tagung am 5./6.10. 2001, Basel, Schweiz.Google Scholar
  54. 54.
    Popp, F.A. (1979) Photon Storage in Biological Systems. In Electromagnetic BioInformation, Popp, F.A., Becker, G., Koenig, H.L. and Peschka, W. (eds.), Urban & Schwarzenberg, München, 123–149.Google Scholar
  55. 55.
    Dürr, H.P., Popp, F.A. and Schommers, W. (2002) What is Life? World Scientific, Singapore-London.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Fritz-Albert Popp
    • 1
  1. 1.Ehem.RaketenstationInternational Institute of BiophysicsNeussGermany

Personalised recommendations