Advertisement

Regulation of Pectinolytic Gene Expression in Aspergillus

  • R. P. De Vries
  • L. Pařenicová
Chapter

Abstract

This chapter discusses the current knowledge of the regulation of pectinolytic genes in Aspergillus and presents a summary of recent data obtained on this topic. So far, little is known about regulatory factors involved in pectin degradation. It appears that the pectinolytic regulatory system is more complex than the xylanolytic regulatory system, in which a general activating factor (XlnR) plays a central role. Some pectinolytic genes are expressed in response to the presence of pectin or pectin derived compounds, but constitutively expressed pectinolytic genes have also been reported. Indications for the involvement of general regulatory factors such as carbon catabolite repression and pH regulation have also been reported. Specific regulatory systems have been proposed for the regulation of genes encoding pectinolytic enzymes acting on the side chains of pectin.

Keywords

Aspergillus Niger Ferulic Acid Galacturonic Acid Aspergillus Nidulans Pectin Lyase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ali, S., and A. Sayed. 1992. Regulation of cellulase biosynthesis in Aspergillus terreus. World J. Microbiol. Biotechnol. 8:73–75.CrossRefGoogle Scholar
  2. 2.
    Araujo, A., and O. P. Ward. 1990. Extracellular mannanases and galactanases from selected fungi. J. Ind. Microbiol. 6:171–178.CrossRefGoogle Scholar
  3. 3.
    Arst, H. N., Jr., C. R. Bailey, and H. A. Penfold. 1980. A possible role for acid phosphatase in g-amino-n-butyrate uptake in Aspergillus nidulans. Arch. Microbiol. 125:153–158.PubMedCrossRefGoogle Scholar
  4. 4.
    Arst, H. N., Jr., E. Bignell, and J. Tilburn. 1994. Two new genes involved in signalling ambient pH in Aspergillus nidulans. Mol. Gen. Genet. 245:787–790.PubMedCrossRefGoogle Scholar
  5. 5.
    Arst, H. N., Jr., and D. J. Cove. 1970. Molybdate metabolism in Aspergillus nidulans. II. Mutations affecting phosphatase activity or galactose utilization. Mol. Gen. Genet. 108:146–153.PubMedCrossRefGoogle Scholar
  6. 6.
    Arst, H. N., Jr., D. Tollervey, C. E. A. Dowzer, and J. M. Kelly. 1990. An inversion truncating the creA gene of Aspergillus nidulans results in carbon catabolite derepression. Mol. Microbiol. 4:851–854.PubMedCrossRefGoogle Scholar
  7. 7.
    Bagga, P. S., D. K. Sandhu, and S. Sharma. 1991. Effect of exogenous cyclic AMP on catabolite repression of cellulase formation in Aspergillus nidulans. Acta Biotechnol. 11:395–402.CrossRefGoogle Scholar
  8. 8.
    Baracat-Pereira, M. C, J. L. C. Coelho, R. C. Minussi, V. M. Chaves-ALves, R. L. Brandao, and D. O. Silva. 1999. Cyclic AMP and low molecular weight effector(s) present in yeast extract are involved in pectin lyase production by Penicillium griseoroseum cultures on sucrose. Appl. Biochem. Biotechnol. 76:129–141.PubMedCrossRefGoogle Scholar
  9. 9.
    Baracat-Pereira, M. C., R. C. Minussi, J. L. C. Coelho, and D. O. Silva. 1997. Tea extract as an inexpensive inducer of pectin lyase in Penicillium griseoroseum cultured on sucrose. J. Industr. Microbiol. Biotechnol. 18:308–311.CrossRefGoogle Scholar
  10. 10.
    Bussink, H. J., K. B. Brouwer, L. H. de Graaff, H. C. Kester, and J. Visser. 1991. Identification and characterization of a second polygalacturonase gene of Aspergillus niger. Curr. Genet. 20:301–307.PubMedCrossRefGoogle Scholar
  11. 11.
    Bussink, H. J. D., F. P. Buxton, B. A. Fraaye, L. H. de Graaff, and J. Visser. 1992. The polygalacturonases of Aspergillus niger are encoded by a family of diverged genes. Eur. J. Biochem. 208:83–90.PubMedCrossRefGoogle Scholar
  12. 12.
    Bussink, H. J. D., F. P. Buxton, and J. Visser. 1991. Expression and sequence comparison of the Aspergillus niger and Aspergillus tubingensis genes encoding polygalacturonase II. Curr. Genet. 19:467–474.PubMedCrossRefGoogle Scholar
  13. 13.
    Bussink, H. J. D., H. C. M. Kester, and J. Visser. 1990. Molecular cloning, nucleotide sequence and expression of the gene encoding prepro-polygalacturonase II of Aspergillus niger. FEBS Lett. 273:127–130.PubMedCrossRefGoogle Scholar
  14. 14.
    Bussink, H. J. D., J. P. T. W. van den Hombergh, P. R. L. A. van den Jssel, and J. Visser. 1992. Characterization of polygalacturonase-overproducing Aspergillus niger transformants. Appl. Microbiol. Biotechnol. 37:324–329.CrossRefGoogle Scholar
  15. 15.
    Caddick, M. X., A. G. Brownlee, and H. N. J. Arst. 1986. Regulation of gene expression by pH of the growth medium in Aspergillus nidulans. Mol. Gen. Genet. 203:346–353.PubMedCrossRefGoogle Scholar
  16. 16.
    Cary, J. W., R. Brown, T. E. Cleveland, M. Whitehead, and R. A. Dean. 1995. Cloning and characterization of a novel polygalacturonase-encoding gene from Aspergillus parasiticus. Gene. 153:129–133.PubMedCrossRefGoogle Scholar
  17. 17.
    Cavalito, S. F., J. A. Arcas, and R. A. Hours. 1996. Pectinase production profile of Aspergillus foetidus in solid state cultures at different acidities. Biotechnol. Lett. 18:251–256.CrossRefGoogle Scholar
  18. 18.
    Christgau, S., L. V. Kofod, T. Halkier, L. N. Anderson, M. Hockauf, K. Dorreich, H. Dalboge, and S. Kauppinen. 1996. Pectin methyl esterase from Aspergillus aculeatus: expression cloning in yeast and characterization of the recombinant enzyme. Biochem. J. 319:705–712.PubMedGoogle Scholar
  19. 19.
    Christgau, S., T. Sandal, L. V. Kofod, and H. Dalboge. 1995. Expression cloning, purification and characterization of a b-1,4-galactanase from Aspergillus aculeatus. Curr. Genet. 27:135–141.PubMedCrossRefGoogle Scholar
  20. 20.
    Cubero, B., and C. Scazzocchio. 1994. Two different, adjacent and divergent zinc finger binding sites are necessary for CreA-mediated carbon catabolite repression in the proline gene cluster of Aspergillus nidulans. EMBO J. 13:407–415.PubMedGoogle Scholar
  21. 21.
    de Graaff, L. H., H. C. van den Broeck, A. J. J. van Ooijen, and J. Visser. 1994. Regulation of the xylanase-encoding xlnA gene of Aspergillus tubingensis. Mol. Microbiol. 12:479–490.PubMedCrossRefGoogle Scholar
  22. 22.
    de Groot, M. J. L., P. J. I. van de Vondervoort, R. P. de Vries, P. A. vanKuyk, G. J. G. Ruijter, and J. Visser. Specific regulation of Aspergillus niger arabinan metabolism. Microbiol. In preparation.Google Scholar
  23. 23.
    de Vries, R. P., J. A. E. Benen, L. H. de Graaff, and J. Visser. 2001. Plant cell wall degrading enzymes produced by Aspergillus., p. In press. In H. D. Osiewacz (ed.), Industrial Applications, vol. X.Google Scholar
  24. 24.
    de Vries, R. P., M. J. A. Flipphi, C. F. B. Witteveen, and J. Visser. 1994. Characterisation of an Aspergillus nidulans L-arabitol dehydrogenase mutant. FEMS Microbiol. Lett. 123:83–90.PubMedCrossRefGoogle Scholar
  25. 25.
    de Vries, R. P., J. Jansen, G. Aguilar, L. Pařenicová, J. A. E. Benen, and J. Visser. Expression profiling of pectinolytic genes from Aspergillus niger. Submitted.Google Scholar
  26. 26.
    de Vries, R. P., H. C. M. Kester, C. H. Poulsen, J. A. E. Benen, and J. Visser. 2000. Synergy between accessory enzymes from Aspergillus in the degradation of plant cell wall polysaccharides. Carbohydr. Res. 327:401–410.PubMedCrossRefGoogle Scholar
  27. 27.
    de Vries, R. P., H. C. M. Kester, P. A. vanKuyk, and J. Visser. The Aspergillus niger faeB gene encodes a second feruloyl esterase involved in pectin and xylan degradation, and is specifically induced on aromatic compounds. Biochem. J. Submitted.Google Scholar
  28. 28.
    de Vries, R. P., C. H. Poulsen, S. Madrid, and J. Visser. 1998. aguA, the gene encoding an extracellular a-glucuronidase from Aspergillus tubingensis, is specifically induced on xylose and not on glucuronic acid. J. Bacteriol. 180:243–249.PubMedGoogle Scholar
  29. 29.
    de Vries, R. P., H. C. van den Broeck, E. Dekkers, P. Manzanares, L. H. de Graaff, and J. Visser. 1999. Differential expression of three a-galactosidase genes and a single b-galactosidase gene from Apergillus niger. Appl. Environ. Microbiol. 65:2453–2460.PubMedGoogle Scholar
  30. 30.
    de Vries, R. P., and J. Visser. 1999. Regulation of the feruloyl esterase (faeA) gene from Aspergillus niger. Appl. Environ. Microbiol. 65(12):5500–5503.PubMedGoogle Scholar
  31. 31.
    de Vries, R. P., J. Visser, and L. H. de Graaff. 1999. CreA modulates the XlnR induced expression on xylose of Aspergillus niger genes involved in xylan degradation. Res. Microbiol. 150:281–285.PubMedCrossRefGoogle Scholar
  32. 32.
    Denison, S. H. 2000. pH regulation of gene expression in fungi. Fung. Genet. Biol. 29:61–71.CrossRefGoogle Scholar
  33. 33.
    Dom, G. 1965. Phosphatase mutants in Aspergillus nidulans. Science. 150:1183–1184.CrossRefGoogle Scholar
  34. 34.
    Dowzer, C. E. A., and J. M. Kelly. 1991. Analysis of the cre A gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Mol. Cell. Biol. 11:5701–5709.PubMedGoogle Scholar
  35. 35.
    Faulds, C. B., R. P. de Vries, P. A. Kroon, J. Visser, and G. Williamson. 1997. Influence of ferulic acid on the production of feruloyl esterases by Aspergillus niger. FEMS Microbiol. Lett. 157:239–244.PubMedCrossRefGoogle Scholar
  36. 36.
    Fernandez-Espinar, M., F. Pinaga, L. de Graaff, J. Visser, D. Ramon, and S. Valles. 1994. Purification, characterization, and regulation of the synthesis of an Aspergillus nidulans acidic xylanase. Appl. Microbiol. Biotechnol. 42:555–562.CrossRefGoogle Scholar
  37. 37.
    Flipphi, M. J. A., M. van Heuvel, P. van der Veen, J. Visser, and L. H. de Graaff. 1993. Cloning and characterisation of the abfβ gene coding for the major a-L-arabinofiiranosidase (AbfB) of Aspergillus niger. Curr. Genet. 24:525–532.PubMedCrossRefGoogle Scholar
  38. 38.
    Flipphi, M. J. A., J. Visser, P. van der Veen, and L. H. de Graaff. 1994. Arabinase gene expression in Aspergillus niger: indications for co-ordinated gene expression. Microbiol. 140:2673–2682.CrossRefGoogle Scholar
  39. 39.
    Galiotou-Panayotou, M., M. Kapantai, and O. Kalantzi. 1997. Growth conditions of Aspergillus sp. ATHUM-3482, for polygalacturonase production. Appl. Microbiol. Biotechnol. 47:425–429.PubMedCrossRefGoogle Scholar
  40. 40.
    Galiotou-Panayotou, M., P. Rodis, and M. Kapantai. 1993. Enhanced polygalacturonase production by Aspergillus niger NRRL-362 grown on supplemented citrus pectin. Lett. Appl. Microbiol. 17:145–148.CrossRefGoogle Scholar
  41. 41.
    Gielkens, M. M. C, E. Dekkers, J. Visser, and L. H. de Graaff. 1999. Two cellobiohydrolase-encoding genes from Aspergillus niger require D-xylose and the xylanolytic transcriptional activator XlnR for their expression. Appl. Environ. Microbiol. 65:4340–4345.PubMedGoogle Scholar
  42. 42.
    Gielkens, M. M. C, L. Gonzales-Candelas, P. Sanchez-Torres, P. J. I. van de Vondervoort, L. H. de Graaf, and J. Visser. 1999. The abfB gene encoding the major a-L-arabinofuranosidase of Aspergillus nidulans: nucleotide sequence, regulation and construction of a disrupted strain. Microbiol. 145:735–741.CrossRefGoogle Scholar
  43. 43.
    Gielkens, M. M. C, J. Visser, and L. H. de Graaff. 1997. Arabinoxylan degradation by fungi: Characterisation of the arabinoxylan arabinofuranohydrolase encoding genes from Aspergillus niger and Aspergillus tubingensis. Curr. Genet. 31:22–29.PubMedCrossRefGoogle Scholar
  44. 44.
    Gonzalez, R. R., and P. Monsan. 1991. Purification and some characteristics of b-galactosidase from Aspergillus fonsecaeus. Enzyme Microb. Technol. 13:349–352.CrossRefGoogle Scholar
  45. 45.
    Harmsen, J. A. M., M. A. Kusters-van Someren, and J. Visser. 1990. Cloning and expression of a second Aspergillus niger pectin lyase gene (pelA): indications of a pectin lyase gene family in A. niger. Curr. Genet. 18:161–166.PubMedCrossRefGoogle Scholar
  46. 46.
    Ho, M.-C., M. P. Whitehead, T. E. Cleveland, and R. A. Dean. 1995. Sequence analysis of the Aspergillus nidulans pectate lyase pelA gene and evidence for binding of promoter regions to CREA, a regulator of carbon catabolite repression. Curr. Genet. 27:142–149.PubMedCrossRefGoogle Scholar
  47. 47.
    Jarai, G., and F. Buxton. 1994. Nitrogen, carbon, and pH regulation of extracellular acidic proteases of Aspergillus niger. Curr. Genet. 26:238–244.PubMedCrossRefGoogle Scholar
  48. 48.
    Kaneko, S., T. Shimasaki, and I. Kusakabe. 1993. Purification and some properties of intracellular a-L-arabinofiiranosidase from Aspergillus niger 5–16. Biosci. Biotech. Biochem. 57:1161–1165.CrossRefGoogle Scholar
  49. 49.
    Kauppinen, S., S. Christgau, L. V. Kofod, T. Halkier, K. Dorreich, and H. Dalboge. 1995. Molecular cloning and characterization of a rhamnogalacturonan acetylesterase from Aspergillus aculeatus. Synergism between rhamnogalacturonan degrading enzymes. J. Biol. Chem. 270:27172–27178.PubMedCrossRefGoogle Scholar
  50. 50.
    Kester, H. C. M., M. A. Kusters-van Someren, Y. Muller, and J. Visser. 1996. Primary structure and characterization of an exopolygalacturonase from Aspergillus tubingensis. Eur. J. Biochem. 240:738–746.PubMedCrossRefGoogle Scholar
  51. 51.
    Kimura, L, N. Yoshioka, and S. Tajima. 1998. Purification and characterization of an endo-l,4-b-D-galactanase from Aspergillus sojae. J. Ferment. Bioeng. 85:48–52.CrossRefGoogle Scholar
  52. 52.
    Kojima, Y., T. Sakamoto, M. Kishida, T. Sakai, and H. Kawasaki. 1999. Acidic condition-inducible polygalacturonase of Aspergillus kawachii. J. Mol. Catalysis B: Enzymatic. 6:351–357.CrossRefGoogle Scholar
  53. 53.
    Kulmburg, P., M. Mathieu, C. Dowzer, J. Kelly, and B. Felenbok. 1993. Specific binding sites in the alcR and alcA promoters of the ethanol regulon for the CreA repressor mediating carbon catabolite repression in Aspergillus nidulans. Mol. Microbiol. 7:847–857.PubMedCrossRefGoogle Scholar
  54. 54.
    Kumar, S., and D. Ramon. 1996. Purification and regulation of the synthesis of a b-xylosidase from Aspergillus nidulans. FEMS Microb. Lett. 135:287–293.Google Scholar
  55. 55.
    Kusters-van Someren, M., M. Flipphi, L. H. de Graaff, H. van den Broeck, H. Kester, A. Hinnen, and J. Visser. 1992. Characterisation of the Aspergillus niger pelB gene: structure and regulation of expression. Mol. Gen. Genet. 234:113–120.Google Scholar
  56. 56.
    Kusters-van Someren, M. A., J. A. M. Harmsen, H. C. M. Kester, and J. Visser. 1991. The structure of the Aspergillus niger pelA gene and its expression in Aspergillus niger and Aspergillus nidulans. Curr. Genet. 20:293–299.CrossRefGoogle Scholar
  57. 57.
    MacCabe, A. P., M. Orejas, J. A. Perez-Gonzalez, and D. Ramon. 1998. Opposite patterns of expression of two Aspergillus nidulans xylanase genes with respect to ambient pH. J. Bact. 180:1331–1333.PubMedGoogle Scholar
  58. 58.
    MacCabe, A. P., J. P. T. W. van den Hombergh, J. Tilbum, H. N. J. Arst, and J. Visser. 1996. Identification, cloning and analysis of the Aspergillus niger gene pacC, a wide domain regulatory gene responsive to ambient pH. Mol. Gen. Genet. 250:367–374.PubMedGoogle Scholar
  59. 59.
    Maldanado, M. C, and A. M. de Saad. 1998. Production of pectinesterase and polygalacturonase by Aspergillus niger in submerged and solid state systems. J. Industr. Microbiol. Biotechnol. 20:34–38.CrossRefGoogle Scholar
  60. 60.
    Maldonado, M. C, A. M. Strasser de Saad, and D. Callieri. 1989. Catabolite repression of the synthesis of inducible polygalacturonase and pectinesterase by Aspergillus sp. Curr. Microbiol. 18:303–306.CrossRefGoogle Scholar
  61. 61.
    Manzanares, P., L. H. de Graaff, and J. Visser. 1998. Characterization of galactosidases from Aspergillus niger: purification of a novel a-galactosidase activity. Enzyme Microb. Technol. 22:383–390.PubMedCrossRefGoogle Scholar
  62. 62.
    McKay, A. M. 1991. Extracellular b-galactosidase production during growth of filamentous fungi on polygalacturonic acid. Lett. Appl. Microbiol. 12:75–77.CrossRefGoogle Scholar
  63. 63.
    Mikhailova, R. V., L. I. Sapunova, and A. G. Lobanok. 1995. Three polygalacturonases constitutively synthesized by Aspergillus alliaceus. World J. Microbiol. Biotechnol. 11:330–332.CrossRefGoogle Scholar
  64. 64.
    Orejas, M., E. A. Espeso, J. Tilbum, S. Sarkar, H. N. J. Arst, and M. A. Penalva. 1995. Activation of the Aspergillus PacC transcription factor in response to alkaline ambient pH requires proteolysis of the carboxy-terminal moiety. Genes & Development. 9:1622–1632.CrossRefGoogle Scholar
  65. 65.
    Panozzo, C, E. Cornillot, and B. Felenbok. 1998. The CreA repressor is the sole DNA-binding protein responsible for carbon catabolite repression of the alcA gene in Aspergillus nidulans via its binding to a couple of specific sites. J. Biol. Chem. 273:6367–6372.PubMedCrossRefGoogle Scholar
  66. 66.
    Pařenicová, L., J. A. E. Benen, H. C. M. Kester, and J. Visser. 2000. pgaA and pgaB encode two constitutively expressed endopolygalacturonases of Aspergillus niger. Biochem. J. 345:637–644.PubMedCrossRefGoogle Scholar
  67. 67.
    Pařenicová, L., J. A. E. Benen, R. A. Samson, and J. Visser. 1997. Evaluation of RFLP analysis of the classification of selected black Aspergilli. Mycol. Res. 101:810–814.CrossRefGoogle Scholar
  68. 68.
    Pařenicová, L., P. Skouboe, J. Frisvad, R. A. Samson, L. Rossen, M. ten Hoor-Suykerbuyk, and J. Visser. 2001. Combined molecular and biochemical approach identifies Aspergillus japonicus and Aspergillus aculeatus as two species. Appl. Environ. Microbiol. 67:521–527.PubMedCrossRefGoogle Scholar
  69. 69.
    Perez-Gonzalez, J. A., N. N. M. E. van Peij, A. Bezoen, A. P. MacCabe, D. Ramon, and L. H. de Graaff. 1998. Molecular cloning and transcriptional regulation of the Aspergillus nidulans xlnD gene encoding b-xylosidase. Appl. Environ. Microbiol. 64:1412–1419.PubMedGoogle Scholar
  70. 70.
    Pinaga, F., M. T. Fernandez-Espinar, S. Valles, and D. Ramon. 1994. Xylanase production in Aspergillus nidulans: Induction and carbon catabolite repression. FEMS Microbiol. Lett. 115:319–324.CrossRefGoogle Scholar
  71. 71.
    Ramon, D., P. van der Veen, and J. Visser. 1993. Arabinan degrading enzymes from Aspergillus nidulans: induction and purification. FEMS Microbiology Letters. 113:15–22.PubMedCrossRefGoogle Scholar
  72. 72.
    Reczey, K., H. Stalbrand, B. Hahn-Hagerdal, and F. Tjemeld. 1992. Mycelia-associated b-galactosidase activity in microbial pellets of Aspergillus and Penicillium strains. Appl. Microbiol. Biotechnol. 38:393–397.CrossRefGoogle Scholar
  73. 73.
    Ruijter, G. J. G., S. I. Vanhanen, M. M. C. Gielkins, P. J. I. van de Vondervoort, and J. Visser. 1997. Isolation of Aspergillus niger creA mutants: Effects on expression of arabinases and L-arabinose catabolic enzymes. Microbiol. 143:2991–2998.CrossRefGoogle Scholar
  74. 74.
    Ruijter, G. J. G., and J. Visser. 1997. Carbon repression in Aspergilli. FEMS Microbiol. Lett. 151:103–114.PubMedCrossRefGoogle Scholar
  75. 75.
    Ruttkowski, E., N. Q. Khanh, F.-J. Wientjes, and M. Gottschalk. 1991. Characterisation of a polygalacturonase gene of Aspergillus niger RH5344. Molec. Microbiol. 5:1353–1361.CrossRefGoogle Scholar
  76. 76.
    Shroff, R A., R A. Lockington, and J. M. Kelly. 1996. Analysis of mutations in the creA gene involved in carbon catabolite repression in Aspergillus nidulans. Can. J. Microbiol. 42:950–959.PubMedCrossRefGoogle Scholar
  77. 77.
    Solis-Pereira, S., E. Favela-Torres, G. Viniegra-Gonzalez, and M. Gutierrez-Rojas. 1993. Effects of different carbon sources on the synthesis of pectinase by Aspergillus niger in submerged and solid state fermentations. Appl. Microbiol. Biotechnol. 39:36–41.Google Scholar
  78. 78.
    Strauss, J., H. K. Horvath, B. M. Abdallah, J. Kindermann, R. L. Mach, and C. P. Kubicek. 1999. The function of CreA, the carbon catabolite repressor of Aspergillus nidulans, is regulated at the transcriptional and post-transcriptional level. Mol. Microbiol. 32:169–178.PubMedCrossRefGoogle Scholar
  79. 79.
    Suykerbuyk, M. E. G., H. C. M. Kester, P. J. Schaap, H. Stem, W. Musters, and J. Visser. 1997. Cloning and characterization of two rhamnogalacturonan hydrolase genes from Aspergillus niger. Appl. Environ. Microbiol. 63:2507–2515.PubMedGoogle Scholar
  80. 80.
    Suykerbuyk, M. E. G., P. J. I. van de Vondervoort, P. J. Schaap, and J. Visser. 1996. Identification of regulatory mutants of Aspergillus aculeatus affected in rhamnogalacturonan hydrolase expression. Curr. Genet. 30:439–446.PubMedCrossRefGoogle Scholar
  81. 81.
    Tilbum, J., S. Sarkar, D. A. Widdick, E. A. Espeso, M. Orejas, J. Mungroo, M. A. Penalva, and H. A. Arst Jr. 1995. The Aspergillus PacC zinc finger transcription factor mediates regulation of both acidic and alkaline expressed genes by ambient pH. EMBO J. 14:779–790.Google Scholar
  82. 82.
    van der Veen, P., M. J. A. Flipphi, A. G. J. Voragen, and J. Visser. 1993. Induction of extracellular arabinases on monomelic substrates in Aspergillus niger. Arch. Microbiol. 159:66–71.PubMedCrossRefGoogle Scholar
  83. 83.
    van der Veen, P., M. J. A. Flipphi, A. G. J. Voragen, and J. Visser. 1991. Induction, purification and characterisation of arabinases produced by Aspergillus niger. Arch. Microbiol. 157:23–28.CrossRefGoogle Scholar
  84. 84.
    van Peij, N. N. M. E., J. Brinkmann, M. Vrsanska, J. Visser, and L. H. de Graaff. 1997. b-xylosidase activity, encoded by xlnD, is essential for complete hydrolysis of xylan by Aspergillus niger but not for induction of the xylanolytic enzyme spectrum. Eur. J. Biochem. 245:164–173.PubMedCrossRefGoogle Scholar
  85. 85.
    van Peij, N. N. M. E., M. M. C. Gielkens, R. P. de Vries, J. Visser, and L. H. de Graaff. 1998. The transcriptional activator XlnR regulates both xylanolytic and endoglucanase expression in Aspergillus niger. Appl. Environ. Microbiol. 64:3615–3619.PubMedGoogle Scholar
  86. 86.
    van Peij, N. N. M. E., J. Visser, and L. H. de Graaff. 1998. Isolation and analysis of xlnR, encoding a transcriptional activator coordinating xylanolytic expression in Aspergillus niger. Mol. Microbiol. 27:131–142.PubMedCrossRefGoogle Scholar
  87. 87.
    Whitehead, M. P., M. T. Shieh, T. E. Cleveland, J. W. Cary, and R. A. Dean. 1995. Isolation and characterization of polygalacturonase genes (pecA and pecB) from Aspergillus flavus. Appl. Environ. Microbiol. 61:3316–3322.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • R. P. De Vries
    • 1
  • L. Pařenicová
    • 2
  1. 1.Molecular Genetics of Industrial MicroorganismsWageningen UniversityWageningenThe Netherlands
  2. 2.Dipartimento di BiologiaUniversita degli studi di MilanoMilanoItaly

Personalised recommendations