Advertisement

Proof Development with Ωmega: The Irrationality of \(\sqrt 2\)

  • Jörg Siekmann
  • Christoph Benzmüller
  • Armin Fiedler
  • Andreas Meier
  • Immanuel Normann
  • Martin Pollet
Part of the Applied Logic Series book series (APLS, volume 28)

Abstract

The well-known theorem asserting the irrationality of \(\sqrt 2\) was proposed as a case study for a comparison of fifteen (interactive) theorem proving systems [Wiedijk, 2002]. This represents an important shift of emphasis in the field of automated deduction away from the somehow artificial problems of the past back to real mathematical challenges.

Keywords

Theorem Prove Prime Divisor Computer Algebra System Control Rule Interactive Proof 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [Allen et al., 2000]
    S. Allen, R. Constable, R. Eaton, C. Kreitz, and L. Lorigo. The Nupri open logical environment. In McAllester [ 2000 ].Google Scholar
  2. [Andrews et al., 1996]
    P. Andrews, M. Bishop, S. Issar, D Nesmith, F. Pfenning, and H. Xi. TPS: A theorem proving system for classical type theory. Journal of Automated Reasoning, 16 (3): 321–353, 1996.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [Bartle and Sherbert, 1982]
    R. Bartle and D. Sherbert. Introduction to Real Analysis. Wiley, 2nd edition, 1982.Google Scholar
  4. [Baumgartner and Furbach, 1994]
    P. Baumgartner and U. Furbach. PROTEIN, a PROver with a Theory INterface. In Bundy [ 1994 ], pages 769–773.Google Scholar
  5. [Benzmüller and Kohlhase, 1998]
    C. Benzmüller and M. Kohlhase. LEO — a higher-order theorem prover. In Kirchner and Kirchner [ 1998 ].Google Scholar
  6. [Benzmüller and Sorge, 1998]
    C. Benzmüller and V. Sorge. A blackboard architecture for guiding interactive proofs. In Giunchiglia [ 1998 ].Google Scholar
  7. [Benzmüller and Sorge, 2000]
    C. Benzmüller and V. Sorge. SZ-ANTS - An open approach at combining Interactive and Automated Theorem Proving. In Kerber and Kohlhase [ 2000 ].Google Scholar
  8. [Benzmüller et al., 1999]
    C. Benzmüller, M. Bishop, and V. Sorge. Integrating TPS and f2MEGA. Journal of Universal Computer Science, 5: 188–207, 1999.Google Scholar
  9. Benzmüller et al.,2002] C. Benzmüller, A. Fiedler, A. Meier, and M. Pollet. Irrationality off — a case study in ftMEGA. Seki-Report SR-02–03, Department of Computer Science, Saarland University, Saarbrücken, Germany, 2002.Google Scholar
  10. Benzmüller et al.,2003] C. Benzmüller, A. Meier, and V. Sorge. Bridging theorem proving and mathematical knowledge retrieval. In Festschrift in Honour of Jörg Siekmann’s 609 Birthday,LNAI. Springer, 2003. To appear.Google Scholar
  11. [Benzmüller, 1999]
    C. Benzmüller. Equality and Extensionality in Higher-Order Theorem Proving. PhD thesis, Department of Computer Science, Saarland University, Saarbrücken, Germany, 1999.Google Scholar
  12. [Bishop and Andrews, 1998]
    M. Bishop and P. Andrews. Selectively instantiating definitions. In Kirchner and Kirchner [ 1998 ].Google Scholar
  13. [Bledsoe, 1990]
    W. Bledsoe. Challenge problems in elementary calculus. Journal of Automated Reasoning, 6: 341–359, 1990.zbMATHCrossRefGoogle Scholar
  14. [Bourbaki, 1968]
    N. Bourbaki. Theory of sets. His Elements of mathematics, 1. Paris, Hermann Reading Mass., Addison-Wesley, 1968.Google Scholar
  15. Bundy et al.,1990] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam System. In M. Stickel, editor, Proceedings of the 10th Conference on Automated Deduction,number 449 in LNCS, pages 647–648, Kaiserslautern, Germany, 1990. Springer.Google Scholar
  16. [Bundy, 1988]
    A. Bundy. The use of explicit plans to guide inductive proofs. In Lusk and Overbeek [ 1988 ], pages 111–120.Google Scholar
  17. [Bundy, 1994]
    A. Bundy, editor. Proceedings of the 12th Conference on Automated Deduction, number 814 in LNAI. Springer, 1994.Google Scholar
  18. [Bundy, 2002]
    A. Bundy. A critique of proof planning. In Computational Logic: LogicProgramming and Beyond, number 2408 in LNCS, pages 160–177. Springer, 2002Google Scholar
  19. Char et al.,1992] B. Char, K. Geddes, G. Gonnet, B. Leong, M. Monagan, and S. Watt. First leaves: a tutorial introduction to Maple V. Springer, 1992.Google Scholar
  20. [Cheikhrouhou and Siekmann, 1998]
    L. Cheikhrouhou and J. Siekmann. Planning diagonalization proofs. In Giunchiglia [ 1998 ], pages 167–180.Google Scholar
  21. [Cheikhrouhou and Sorge, 2000]
    L. Cheikhrouhou and V. Sorge. PDS — A Three-Dimensional Data Structure for Proof Plans. In Proceedings of the International Conference on Artificial and Computational Intelligence for Decision, Control and Automation in Engineering and Industrial Applications (ACIDCA ‘2000), Monastir, Tunisia, 22–24 March 2000.Google Scholar
  22. [Church, 1940]
    A. Church. A Formulation of the Simple Theory of Types. The Journal of Symbolic Logic, 5: 56–68, 1940.MathSciNetzbMATHCrossRefGoogle Scholar
  23. Coq Development Team, 1999–2003] Coq Development Team. The Coq Proof Assistant Reference Manual. INRIA 1999–2003. See http://coq.inria.fr/doc/main.html.Google Scholar
  24. [de Nivelle, 1999]
    H. de Nivelle. Bliksem 1.10 user manual. Technical report, MaxPlanck-Institut fr Informatik, 1999.Google Scholar
  25. Doris, 2001] The Doris system is available at http://ww.cogsci.ed.ac.uk/~jbos/doris/.
  26. [Drummond, 1994]
    M. Drummond. On precondition achievement and the computational economics of automatic planning. In Current Trends in AI Planning, pages 6–13. IOS Press, 1994.Google Scholar
  27. [Fiedler, 2001a]
    A. Fiedler. R rex: An interactive proof explainer. In Goré et al. [ 2001 ].Google Scholar
  28. [Fiedler, 2001b]
    A. Fiedler. Dialog-driven adaptation of explanations of proofs. In B. Nebel, editor, Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI), pages 1295–1300, Seattle, WA, 2001. Morgan Kaufmann.Google Scholar
  29. [Fiedler, 2001c]
    A. Fiedler. User-adaptive proof explanation. PhD thesis, Department of Computer Science, Saarland University, Saarbrücken, Germany, 2001.Google Scholar
  30. [Fikes and Nilsson, 1971]
    R.E. Fikes and N.J. Nilsson. STRIPS: A new approach to the application of theorem proving to problem solving. Artificial Intelligence, 2: 189–208, 1971.zbMATHCrossRefGoogle Scholar
  31. [Fikes et al., 1972]
    R. R. Fikes, P. E. Hart, and N. J. Nilsson. Learning and executing generalized robot plans. Artificial Intelligence, 3: 251–288, 1972.Google Scholar
  32. [Franke and Kohlhase, 2000]
    A. Franke and M. Kohlhase. System description: MBAsE, an open mathematical knowledge base. In McAllester [ 2000 ].Google Scholar
  33. [Ganzinger, 1999]
    H. Ganzinger, editor. Proceedings of the 16th Conference on Automated Deduction, number 1632 in LNAI. Springer, 1999.Google Scholar
  34. [Gebhard, 1999]
    H. Gebhard. Beweisplanung für die Beweise der Vollständigkeit verschiedener Resolutionskalküle in SIMEGA. Master’s thesis, Department of Computer Science, Saarland University, Saarbrücken, Germany, 1999.Google Scholar
  35. [Gentzen, 1935]
    G. Gentzen. Untersuchungen über das logische Schließen I XXXXXX II. Mathematische Zeitschrift, 39: 176–210, 572–595, 1935.Google Scholar
  36. [Giunchiglia, 1998]
    F. Giunchiglia, editor. Proceedings of 8th International Conference on Artificial Intelligence: Methodology, Systems, Applications (AIMSA’98), number 1480 in LNAI. Springer, 1998.Google Scholar
  37. [Gordon and Melham, 1993]
    M. Gordon and T. Melham. Introduction to HOL - A theorem proving environment for higher order logic. Cambridge University Press, 1993.Google Scholar
  38. [Gore et al., 2001]
    R. Goré, A. Leitsch, and T. Nipkow, editors. Automated Reasoning — ist International Joint Conference, IJCAR 2001, number 2083 in LNAI. Springer, 2001.Google Scholar
  39. [Hadamard, 1944]
    J. Hadamard. The Psychology of Invention in the Mathematical Field. Dover Publications, New York, USA; edition 1949, 1944.Google Scholar
  40. [Hillenbrand et al., 1999]
    Th. Hillenbrand, A. Jaeger, and B. Löchner. System description: Waldmeister — improvements in performance and ease of use. In Ganzinger [ 1999 ], pages 232–236.Google Scholar
  41. [Huang, 1994]
    X. Huang. Reconstructing Proofs at the Assertion Level. In Bundy [ 1994 ], pages 738–752.Google Scholar
  42. [Ireland and Bundy, 1996]
    A. Ireland and A. Bundy. Productive use of failure in inductive proof. Journal of Automated Reasoning, 16 (1–2): 79–111, 1996.MathSciNetzbMATHCrossRefGoogle Scholar
  43. [Kerber and Kohlhase, 2000]
    M. Kerber and M. Kohlhase, editors. 8th Symposium on the Integration of Symbolic Computation and Mechanized Reasoning (Calculemus2000). AK Peters, 2000.Google Scholar
  44. [Kirchner and Kirchner, 1998]
    C. Kirchner and H. Kirchner, editors. Proceedings of the 15th Conference on Automated Deduction, number 1421 in LNAI. Springer, 1998.Google Scholar
  45. [Kirchner and Ringeissen, 2000]
    H. Kirchner and C. Ringeissen, editors. Frontiers of combining systems: Third International Workshop, FroCoS 2000, volume 1794 of LNAL Springer, 2000.Google Scholar
  46. [Kohlhase and Franke, 2001]
    M. Kohlhase and A. Franke. MBAsE: Representing knowledge and context for the integration of mathematical software systems. Journal of Symbolic Computation; Special Issue on the Integration of Computer Algebra and Deduction Systems, 32 (4): 365–402, September 2001.MathSciNetzbMATHGoogle Scholar
  47. [Lusk and Overbeek, 1988]
    E. Lusk and R. Overbeek, editors. Proceedings of the 9th Conference on Automated Deduction, number 310 in LNCS, Argonne, Illinois, USA, 1988. Springer.Google Scholar
  48. [Manthey and Bry, 1988]
    R. Manthey and F. Bry. SATCHMO: A theorem prover implemented in Prolog. In Lusk and Overbeek [ 1988 ], pages 415–434.Google Scholar
  49. [McAllester, 2000]
    D. McAllester, editor. Proceedings of the 17th Conference on Automated Deduction, number 1831 in LNAI. Springer, 2000.Google Scholar
  50. [McCune, 1994]
    W. W. McCune. Otter 3.0 reference manual and guide. Technical Report ANL-94–6, Argonne National Laboratory, Argonne, Illinois 60439, USA, 1994.Google Scholar
  51. [McCune, 1997]
    W. McCune. Solution of the Robbins problem. Journal of AutomatedReasoning, 19 (3): 263–276, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  52. [Meier and Sorge, 2000]
    A. Meier and V. Sorge. Exploring properties of residue classes. In Kerber and Kohlhase [ 2000 ].Google Scholar
  53. [Meier et al., 2001]
    A. Meier, M. Pollet, and V. Sorge. Classifying Isomorphic Residue Classes. In R. Moreno-Diaz, B. Buchberger, and J.-L. Freire, editors, A Selection of Papers from the 8th International Workshop on Computer Aided Systems Theory (EuroCAST 2001), number 2178 in LNCS, pages 494–508. Springer, 2001.Google Scholar
  54. [Meier et al., 2002a]
    A. Meier, E. Melis, and M. Pollet. Towards extending domain representations. Seki Report SR-02–01, Department of Computer Science, Saarland University, Saarbrücken, Germany, 2002.Google Scholar
  55. [Meier et al., 2002b]
    A. Meier, M. Pollet, and V. Sorge. Comparing Approaches to the Exploration of the Domain of Residue Classes. Journal of Symbolic Computation, Special Issue on the Integration of Automated Reasoning and Computer Algebra Systems, 34(4):287–306, October 2002. Steve Linton and Roberto Sebastiani, eds.Google Scholar
  56. [Meier, 2000]
    A. Meier. TRAMP: Transformation of Machine-Found Proofs into Natural Deduction Proofs at the Assertion Level. In McAllester [ 2000 ].Google Scholar
  57. [Meier, 2003]
    A. Meier. Proof Planning with Multiple Strategies. PhD thesis, Department of Computer Science, Saarland University, Saarbrücken, Germany, 2003.Google Scholar
  58. [Melia and Meier, 2000]
    E. Melis and A. Meier. Proof planning with multiple strategies. In J. Loyd, V. Dahl, U. Furbach, M. Kerber, K. Lau, C. Palamidessi, L.M. Pereira, Y. Sagivand, and P. Stuckey, editors, First International Conference on Computational Logic (CL-2000), number 1861 in LNAI, pages 644–659, London, UK, 2000. Springer.Google Scholar
  59. [Melia and Siekmann, 1999]
    E. Melia and J. Siekmann. Knowledge-based proof planning. Artificial Intelligence, 115 (1): 65–105, 1999.MathSciNetGoogle Scholar
  60. [Melia et al., 2000]
    E. Melia, J. Zimmer, and T. Müller. Integrating constraint solving into proof planning. In Kirchner and Ringeissen [ 2000 ].Google Scholar
  61. [Melia, 1996]
    E. Melia. Island planning and refinement. Seki-Report SR-96–10, Department of Computer Science, Saarland University, Saarbrücken, Germany, 1996.Google Scholar
  62. [Melia, 1998]
    Erica Melis. AI-techniques in proof planning. In H. Prade, editor, Proceedings of the 13th European Conference on Artifical Intelligence, pages 494–498, Brighton, UK, 1998. John Wiley XXXXXX Sons, Chichester, UK.Google Scholar
  63. [Newell and Simon, 1963]
    A. Newell and H. Simon. GPS: A program that simulates human thought. In E. Feigenbaum and J. Feldman, editors, Computers and Thought, pages 279–296. McGraw-Hill, New York, NY, 1963.Google Scholar
  64. [Nipkow et al., 2002]
    Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof Assistant for Higher-Order Logic. Number 2283 in LNCS. Springer, 2002.Google Scholar
  65. Owre et al.,1996] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M. Srivas. PVS: Combining specification, proof checking, and model checking. In R. Alur and T. Hen-zinger, editors, Computer-Aided Verification, CAV ‘86,number 1102 in LNCS, pages 411–414, New Brunswick, NJ, 1996. Springer.Google Scholar
  66. [Paulson, 1994]
    L. Paulson. Isabelle: A Generic Theorem Prover. Number 828 in LNCS. Springer, 1994.Google Scholar
  67. [Polya, 1973]
    G. Polya. How to Solve it. Princeton University Press, 1973.Google Scholar
  68. [Riazanov and Voronkov, 2001]
    A. Riazanov and A. Voronkov. Vampire 1.1 (system description). In Goré et al. [ 2001 ].Google Scholar
  69. [Richardson et al., 1998]
    J. Richardson, A. Smaill, and I. Green. System description: Proof planning in higher-order logic with AClam. In Kirchner and Kirchner [ 1998 ].Google Scholar
  70. [Schönert and others, 1995]
    M. Schönert et al. GAP - Groups, Algorithms, and Programming. Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany, 1995.Google Scholar
  71. [Siekmann et al., 1999]
    J. Siekmann, S. Hess, C. Benzmüller, L. Cheikhrouhou, A. Fiedler, H. Horacek, M. Kohlhase, K. Konrad, A. Meier, E. Melis, M. Pollet, and V. Sorge. LOUT: Lovely S2MEGA User Interface. Formal Aspects of Computing, 11: 326–342, 1999.CrossRefGoogle Scholar
  72. Siekmann et al.,2002] J. Siekmann, C. Benzmüller, V. Brezhnev, L. Cheikhrouhou, A. Fiedler, A. Franke, H. Horacek, M. Kohlhase, A. Meier, E. Melis, M. Moschner, I. Normann, M. Pollet, V. Sorge, C. Ullrich, C.-P. Wirth, and J. Zimmer. Proof development with S1MEGA. In Voronkov [2002], pages 143–148.Google Scholar
  73. [Sorge, 2000]
    V. Sorge. Non-Trivial Computations in Proof Planning. In Kirchner and Ringeissen [ 2000 ].Google Scholar
  74. [Sorge, 2001]
    V. Sorge. fl-ANTS — A Blackboard Architecture for the Integration of Reasoning Techniques into Proof Planning. PhD thesis, Department of Computer Science, Saarland University, Saarbrücken, Germany, 2001.Google Scholar
  75. [Sutcliffe et al., 1994]
    G. Sutcliffe, C. Suttner, and T. Yemenis. The TPTP problem library. In Bundy [ 1994 ].Google Scholar
  76. Voetal., 2003] B. Quoc Vo, C. Benzmüller, and S. Autexier. Assertion application in theorem proving and proof planning. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),Acapulco, Mexico, 2003. (poster description).Google Scholar
  77. [Voronkov, 2002]
    A. Voronkov, editor. Proceedings of the 18th International Conference on Automated Deduction, number 2392 in LNAI. Springer, 2002.Google Scholar
  78. [Weidenbach et al., 1999]
    C. Weidenbach, B. Afshordel, U. Brahm, C. Cohrs, Th. Engel, E. Keen, C. Theobalt, and D. Topic. System description: SPASS version 1.0.0. In Ganzinger [ 1999 ], pages 378–382.Google Scholar
  79. [Weld, 1994]
    D. Weld. An introduction to least commitment planning. AI Magazine, 15 (4): 27–61, 1994.Google Scholar
  80. [Wiedijk, 2002]
    F. Wiedijk. The fifteen provers of the world. Unpublished Draft, 2002.Google Scholar
  81. [Zhang and Zhang, 1995]
    J. Zhang and H. Zhang. SEM: A system for enumerating models. In C. S. Mellish, editor, Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI), pages 298–303, Montreal, Canada, 1995. Morgan Kaufmann, San Mateo, California, USA.Google Scholar
  82. [Zimmer and Kohlhase, 2002]
    J. Zimmer and M. Kohlhase. System description: The Mathweb Software Bus for distributed mathematical reasoning. In Voronkov [ 2002 ], pages 138–142.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Jörg Siekmann
  • Christoph Benzmüller
  • Armin Fiedler
  • Andreas Meier
  • Immanuel Normann
  • Martin Pollet

There are no affiliations available

Personalised recommendations