Synthesis of Methanofullerenes for Materials Science and Biological Applications

  • J.-F. Nierengarten
Part of the Developments in Fullerene Science book series (DFUL, volume 4)


Following the discovery of the macroscopic-scale C60 synthesis by Krätschmer, Huffman and co-workers, the physical properties of this fascinating carbon cage have been intensively investigated [1–8]. Among the most spectacular findings, C60 was found to behave like an electronegative molecule able to reversibly accept up to six electrons, to become a supraconductor in M3C60 species (M = alkali metals), or to be an interesting material with non-linear optical properties [1–8]. However, this new molecular material aggregates very easily and is insoluble or only sparingly soluble in most solvents. Therefore, pristine C60 is difficult to handle. This serious obstacle for practical applications can be, at least in part, overcome with the help of the organic modification of C60. Effectively, the recent developments in the functionalization of fullerenes allow the preparation of highly soluble C60 derivatives easier to handle, and the electronic properties such as facile multiple reducibility, optical non-linearity or efficient photosensitization that are characteristic of the parent fullerene are maintained for most of the C60 derivatives [1–8].


Malonic Acid Fullerene Derivative Diazo Compound Carbon Allotrope Fullerene Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and notes

  1. 1.
    Hirsch A. (1994) The Chemistry of Fullerenes, Thieme, New York.CrossRefGoogle Scholar
  2. 2.
    Echegoyen L. and Echegoyen L.E. (1998) Electrochemistry of fullerenes and their derivatives, Acc. Chem. Res. 31, 593–601.CrossRefGoogle Scholar
  3. Prato M. (1997) [60] Fullerene chemistry for materials science applications, J. Mater. Chem. 7, 1097–1109.CrossRefGoogle Scholar
  4. 4.
    Martin N., Sanchez L., Illescas B. and Perez I. (1998) C60-based electroactive organofullerenes, Chem. Rev. 98, 2527–2547.CrossRefGoogle Scholar
  5. 5.
    Reed C.A. and Bolskar R.D. (2000) Discrete fullende anions and fullerenium cations, Chem. Rev. 100, 1075–1119.CrossRefGoogle Scholar
  6. 6.
    Guldi D.M. (2000) Fullerenes: three dimensional electron acceptor materials, Chem. Commun., 321–327.Google Scholar
  7. 7.
    Imahori H. and Sakata Y. (1997) Donor-linked fullerenes: photoinduces electron transfer and its potential application, Adv. Mater. 9, 537–546.CrossRefGoogle Scholar
  8. 8.
    Diederich F. and Gomez-Lopez M. (1999) Supramolecular fullerene chemistry, Chem. Soc. Rev. 28, 263–277.CrossRefGoogle Scholar
  9. 9.
    Diederich F., Isaacs L. and Philp D. (1994) Synthesis, structure and properties of methanofullerenes, Chem. Soc. Rev., 243–255.Google Scholar
  10. 10.
    Suzuki T., Li Q., Khemani K.C. and Wudl F. (1992) Dihydrofulleroid C61H2: synthesis and properties of the parent fulleroid, J. Am. Chem. Soc. 114, 7301–7302.CrossRefGoogle Scholar
  11. 11.
    Smith III A.B., Strongin R.M., Brard L., Furst G.T., Romanov W.J., Owens K.G. and King R.C. (1993) 1,2-methanobuckminsterfullerene (C61H2), the parent fullerene cyclopropane: synthesis and structure, J. Am. Chem. Soc. 115, 5829–5830.CrossRefGoogle Scholar
  12. 12.
    Hall M.H., Lu H. and Shevlin P.B. (2001) Observation of both thermal first-order and photochemical zero-order kinetics in the rearrangement of [6,5]-open fulleroids to [6,6]-closed fullerenes, J. Am. Chem. Soc. 123, 1349–1354.CrossRefGoogle Scholar
  13. 13.
    Janssen R.A. J., Hummelen J.C. and Wudl F. (1995) Photochemical fulleroid to methanofullerene conversion via the di-π-methane (Zimmerman) rearrangement, J. Am. Chem. Soc. 117, 544–545.CrossRefGoogle Scholar
  14. 14.
    Suzuki T., Li Q. and Wudl F., Almarsson O. (1992) Synthesis of m-phenylene- and p-phenylenebis(phenylfulleroids): two-pearl sections of pearl necklace polymers, J. Am. Chem. Soc. 114, 7300–7301.CrossRefGoogle Scholar
  15. 15.
    Prato M., Bianco A., Maggini M., Scorrano G., Toniolo C. and Wudl, F. (1993) Synthesis and characterization of the first fullerene-peptide, J. Org. Chem. 58, 5578–5580.CrossRefGoogle Scholar
  16. 16.
    Prato M., Suzuki T., Wudl F., Lucchini V. and Maggini M. (1993) J. Am. Chem. Soc. 115, 7876–7877.CrossRefGoogle Scholar
  17. 17.
    Osterodt J., Nieger M., Windscheif P-M. and Vögtle, F. (1993) Verkronte fullerene, Chem. Ber. 126, 2331–2336.CrossRefGoogle Scholar
  18. 18.
    Wilson S.R. and Wu Y. (1993) Crown ether fulleroids and their detection in solution by electrospray MS, Chem. Commun., 784–786.Google Scholar
  19. 19.
    Hummelen J.C., Knight B.W., LePeq F., Wudl F., Yao J. and Wilkins C.L. (1995) Preparation and characterization of fulleroid and methanofullerene derivatives, J. Org. Chem. 60, 532–538.CrossRefGoogle Scholar
  20. 20.
    Tomioka H. and Yamamoto K. (1996) Synthesis and solubility properties of C60 fullerene derivatives bearing carboxy groups, J. Chem. Soc. Perkin Trans. 1, 63–66.CrossRefGoogle Scholar
  21. 21.
    Knol J. and Hummelen J.C. (2000) Photodimerization of a m-phenylenebis(arylmethanofullerene): the first rigorous proof for photochemical inter-fullerene [2+2]cycloaddition, J. Am. Chem. Soc. 122, 3226–3227.CrossRefGoogle Scholar
  22. 22.
    Meijer M.D., Rump M., Gossage R.A., Jastrzebski J.H.T.B. and van Koten G. (1998) New “bucky-ligands”, potentially monoanionic terdentate diamino aryl pincer ligands anchored to C60, Tetrahedron Lett. 39, 6773–6776.CrossRefGoogle Scholar
  23. 23.
    Shi S., Khemani K.C., Li Q. and Wudl F. (1992) A polyester and polyurethane of diphenyl C61: retention of fulleroid properties in a polymer, J. Am. Chem. Soc. 114, 10656–10657.CrossRefGoogle Scholar
  24. 24.
    Wooley K.L., Hawker C.J., Fréchet J.M.J., Wudl F., Srdanov G., Shi S., Li C. and Kao M. (1993) Fullerene-bound dendrimers: soluble, isolated carbon clusters, J. Am. Chem. Soc. 115, 9836–9837CrossRefGoogle Scholar
  25. 25.
    Wang S., Leblanc R.M., Arias F. and Echegoyen L. (1998) Study of Langmuir monolayers of crown-ether derivatives and their interaction with different subphase ions, Thin Solid Films 327–329, 141–144.CrossRefGoogle Scholar
  26. 26.
    Arias F., Godinez L.A., Wilson S.R., Kaifer A.E. and Echegoyen L. (1996) Interfacial hydrogen bonding, self-assembly of a monolayer of a fullerene-crown ether derivative on gold surfaces deriva-tized with an ammonium terminated alkanethiol, J. Am. Chem. Soc. 118, 6086–6087.CrossRefGoogle Scholar
  27. 27.
    Sijbesma R., Srdanov G., Wudl F., Castoro J.A., Wilkins C., Friedman S.H., DeCamp D.L. and Kenyon G.L. (1993) Synthesis of a fullerene derivative for the inhibition of HIV enzymes, J. Am. Chem. Soc. 115, 6510–6512.CrossRefGoogle Scholar
  28. 28.
    Friedman S.H., DeCamp D.L., Sijbesma R.P., Srdanov G., Wudl F. and Kenyon G.L. (1993) Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification, J. Am. Chem. Soc. 115, 6506–6509.CrossRefGoogle Scholar
  29. 29.
    Hummelen J.C., Knight B.W., LePeq F., Wudl F., Yao J. and Wilkins C.L. (1995) Preparation and characterization of fulleroid and methanofullerene, J. Org. Chem. 60, 532–538.CrossRefGoogle Scholar
  30. 30.
    An Y-Z., Rubin Y., Schaller C. and McElvany S.W. (1994), Synthesis and characterization of diethynylmethanobuckminsterfullerene, a building block for macrocyclic and polymeric carbon allotropes, J. Org. Chem. 59, 2927–2929.CrossRefGoogle Scholar
  31. 31.
    Anderson H.L., Faust R., Rubin Y. and Diederich F. (1994) Fullerene-acetylene hybrids: on the way to synthetic molecular carbon allotropes, Angew. Chem. Int. Ed. Engl. 33, 1366–1368.CrossRefGoogle Scholar
  32. 32.
    Li Z., Bouhadir K.H. and Shelvin P.B. (1996) Convenient synthesis of 6,5 open and 6,6 closed cycloalkylidenefullerenes, Tetrahedron Lett. 37, 4651–4654.CrossRefGoogle Scholar
  33. 33.
    Timmerman P., Anderson H.L., Faust R., Nierengarten J-F., Habicher T., Seiler P. and Diederich F. (1996) Fullerene-acetylene hybrids: towards a novel class of molecular carbon allotropes, Tetrahedron 52, 4925–4947.CrossRefGoogle Scholar
  34. 34.
    Ohno T., Moriwaki K. and Miyata T. (2001) Intramolecular charge-transfer interaction in a new dyad based on C60 and bis(4′-tert-butylbiphenyl-4-yl)aniline (BBA) donor, J. Org. Chem. 66, 3397–3401.CrossRefGoogle Scholar
  35. 35.
    Ravaine S., Vicentini F., Maurac M. and Delhaes P. (1995) Synthesis and characterization of non-crystalline methanofullerenes, New J. Chem. 19, 1–3.Google Scholar
  36. 36.
    Sastre A., Gouloumis A., Vasquez P., Torres T., Doan V., Schwartz B.J., Wudl F., Echegoyen L. and Riveira J. (1999) Phtalocyanine-azacrown-fullerene multicomponent system: synthesis, photoinduced processes, and electrochemistry, Org. Lett. 1, 1807–1810.CrossRefGoogle Scholar
  37. 37.
    Ravaine S., Le Pecq F., Mingotaud C., Delhaes P., Hummelen J.C., Wudl F. and Patterson L.K. (1995) Synthesis, physical characterization, and Langmuir films of new methanofullerenes, J. Phys. Chem. 99, 9551–9557.CrossRefGoogle Scholar
  38. 38.
    Avent A.G., Birkett P.R., Paolucci F., Roffia S., Taylor R. and Wachter N.K. (2000) Synthesis and electrochemical behaviour of [60]fullerene possessing poly(arylacetylene) dendrimer addends, J. Chem. Soc., Perkin Trans. 2, 1409–1414.Google Scholar
  39. 39.
    Isaacs L., Seiler P. and Diederich F. (1995) Solubilized derivatives of C195 and C260: the first members of a new class of carbon allotropes Cn(60+5), Angew. Chem. Int. Ed. Engl. 34, 1466.CrossRefGoogle Scholar
  40. 40.
    Diederich F., Dietrich-Buchecker C., Nierengarten J-F. and Sauvage J-P. (1995) A copper(I)-complexed rotaxane with two fullerene stoppers, Chem. Commun., 781–782.Google Scholar
  41. 41.
    Armaroli N., Diederich F., Dietrich-Buchecker C., Flamigni L., Marconi G., Nierengarten J-F. and Sauvage J-P. (1998) A copper(I)-complexed rotaxane with two fullerene stoppers: synthesis, electrochemistry, and photoinduced processes, Chem. Eur. J. 4, 406–416.CrossRefGoogle Scholar
  42. 42.
    Isaacs L. and Diederich F. (1993) Structures and chemistry of methanofullerenes: a versatile route into N-[(methanofullerene)carbonyl]-substituted amino-acids, Helv. Chim. Acta 76, 2454–2464.CrossRefGoogle Scholar
  43. 43.
    Isaacs L., Wehrsig A. and Diederich F. (1993) Improved purification of C60 and formation of σ-and π-homoaromatic methano-bridged fullerenes by reaction with alkyl diazoacetates, Helv. Chim. Acta 76, 1231–1250.CrossRefGoogle Scholar
  44. 44.
    Skiebe A. and Hirsch A. (1994) A facile method for the synthesis of amino acid and amido derivatives of C60, Chem. Commun., 335–336Google Scholar
  45. 45.
    Bestmann H.J. and Moll C. (1996) Reaction of C60 with a-diazoketones: methano- and dihydro-furanofullerenes, Synlett, 729–730.Google Scholar
  46. 46.
    Safonov I.G., Baran P.S. and Schuster D.I. (1997) Synthesis and photophysics of a novel porphyrin-C60 hybrid, Tetrahedron Lett. 38, 8133–8136.CrossRefGoogle Scholar
  47. 47.
    Baran P.S., Monaco R.R., Khan A.U., Schuster D. and Wilson S.R. (1997) Synthesis and cation-mediated electronic interactions of two novel classes of porphyrin-fullerene hybrids, J. Am. Chem. Soc. 119, 8363–8364.CrossRefGoogle Scholar
  48. 48.
    MacMahon S., Fong II R., Baran P.S., Safonov I., Wilson S.R. and Schuster D.I. (2001) Synthetic approaches to a variety of covalently linked porphyrin-fullerene hybrids, J. Org. Chem. 66, 5449–5455.CrossRefGoogle Scholar
  49. 49.
    Jonas U., Cardullo F., Belik P., Diederich F., Gügel A., Harth E., Herrmann A., Isaacs L., Müllen K., Ringsdorf H., Thilgen C., Uhlmann P., Vasella A., Waldraff C.A.A. and Walter M. (1995) Synthesis of a fullerene[60] cryptate and systematic Langmuir-Blodgett and thin film investigations of amphiphilic fullerene derivatives, Chem. Eur. J. 1, 243–251.CrossRefGoogle Scholar
  50. 50.
    Cardullo F., Diederich F., Echegoyen L., Habicher T., Jayaraman N., Lablanc R., Stoddart J.F. and Wang S. (1998) Stable Langmuir and Langmuir-Blodgett films of fullerene-glycodendron conjugates, Langmuir 14, 1955–1959.CrossRefGoogle Scholar
  51. 51.
    Vasella A., Uhlmann P., Waldraff C.A.A., Diederich F. and Thigen C. (1992) Fullerene-sugars: preparation of enantiomerically pure, spiro-linked C-glycosides of C60, Angew. Chem. Int. Ed. Engl. 31, 1388–1390.CrossRefGoogle Scholar
  52. 52.
    Win W.W., Kao M., Eiermann M., McNamara J.J., Wudl F., Pole D., Kassam K. and Warkentin J. (1994) Methyl 1,2-dihydrofullerenecarboxylate, J. Org. Chem. 59, 5871–5876.CrossRefGoogle Scholar
  53. 53.
    Nierengarten J-F. and Nicoud J-F. (1997) Cyclopropanation of C60 with malonic acid mono-esters, Tetrahedron Lett. 38, 7737–7740.CrossRefGoogle Scholar
  54. 54.
    Tsuda M., Ishida T., Nogami T., Kurono S. and Ohashi M. (1993) C61C12: synthesis and characterization of dichlorocarbene adducts of C60, Tetrahedron Lett. 34, 6911–6912.CrossRefGoogle Scholar
  55. 55.
    Osterodt J. and Vögtle F. (1996) C61Br2: a new synthesis of dibromomethanofullerene and mass spectrometric evidence of carbon ätiotropes C121 and C122, Chem. Commun., 547–548.Google Scholar
  56. 56.
    Dragoe N., Tanibayashi S., Nakahara K., Nakao S., Shimotani H., Xiao L., Kitazawa K., Achiba Y., Kikuchi K. and Nojima K. (1999) Carbon allotropes of dumbbell structure: C121 and C122, Chem. Commun., 85–86.Google Scholar
  57. 57.
    Bingel C. (1993) Cyclopropanierung von fullerenen, Chem. Ber. 126, 1957–1959.CrossRefGoogle Scholar
  58. 58.
    Nierengarten J-F., Grämlich V., Cardullo F. and Diederich F. (1996) Regio- and diastereoselec-tive bisfunctionalization of C60 and enantioselective synthesis of a C60 derivative with a chiral addition pattern, Angew. Chem. Int. Ed. Engl. 35, 2101–2103.CrossRefGoogle Scholar
  59. 59.
    Camps X. and Hirsch A. (1997) Efficient cyclopropanation of C60 starting from malonates, J. Chem. Soc. Perkin Trans. 1, 1595–1596.CrossRefGoogle Scholar
  60. 60.
    Chuard T. and Deschenaux R. (1996) First fullerene[60]-containing thermotropic liquid crystal, Helv. Chim. Acta 79, 736–741.CrossRefGoogle Scholar
  61. 61.
    Deschenaux R., Even M. and Guillon D. (1998) Liquid-crystalline mixed [60]fullerene-ferrocene materials, Chem. Commun., 537–538.Google Scholar
  62. 62.
    Dardel B., Deschenaux R., Even M. and Serrano E. (1999) Synthesis, characterization, and mesomorphic properties of a mixed [60]fullerene-ferrocene liquid-crystalline dendrimer, Macromolecules 32, 5193–5198.CrossRefGoogle Scholar
  63. 63.
    Tirelli N., Cardullo F., Habicher T., Suter U.W. and Diederich F. (2000) Thermotropic behaviour of covalent adducts displaying 4-cyano-4’-oxybiphenyl mesogens, J. Chem. Soc. Perkin Trans. 2, 193–198.Google Scholar
  64. 64.
    Dardel B., Guillon D., Heinrich B. and Deschenaux R. (2001) Fullerene-containing liquid-crystalline dendrimers, J. Mater. Chem. 11, 2814–2831.CrossRefGoogle Scholar
  65. 65.
    Bourgeois J-P., Diederich F., Echegoyen L. and Nierengarten J-F. (1998) Synthesis, and optical and electrochemical properties of cyclophane-type molecular dyads containing a porphyrin in close, tangential orientation relative to the surface of trans-1 functionalized C60, Helv. Chim. Acta 81, 1835–1844.CrossRefGoogle Scholar
  66. 66.
    Nierengarten J-F., Oswald L. and Nicoud J-F. (1998) Dynamic cis/trans isomerisation in a porphyrin-fullerene conjugate, Chem. Commun., 1545–1546.Google Scholar
  67. 67.
    Dietel E., Hirsch A., Zhou J. and Rieker A. (1998) Synthesis and electrochemical investigationsGoogle Scholar
  68. 68.
    Dietel E., Hirsch A., Eichhorn E., Rieker A., Hackbarth S. and Röder B. (1998) A macrocyclic [60]fullerene-porphyrin dyad involving σ -σ stacking interactions, Chem. Commun., 1981–1982.Google Scholar
  69. 69.
    Cheng P., Wilson S.R. and Schuster D.I. (1999) A novel parachute-shaped C60 porphyrin dyad, Chem. Commun., 89–90.Google Scholar
  70. 70.
    Wedel M. and Monforts F-P. (1999) A facile access to porphyrin fullerene dyads and their optical properties, Tetrahedron Lett. 40, 7071–7074.CrossRefGoogle Scholar
  71. 71.
    Armaroli N., Marconi G., Echegoyen L., Bourgeois J-P. and Diederich F. (2000) Charge transfer interactions in face-to-face porphyrin-fullerene systems: solvent-dependant luminescence in the infrared spectral region, Chem. Eur. J. 6, 1629–1645.CrossRefGoogle Scholar
  72. 72.
    Guldi D.M., Luo C., Swartz A., Scheloske M. and Hirsch A. (2001) Self-organization in photoactive fullerene porphyrin based donor-acceptor ensembles, Chem. Commun., 1066–1067.Google Scholar
  73. 73.
    Armspach D., Constable E.C., Diederich F., Housecroft C.E. and Nierengarten J-F. (1996) Bucky-ligands: fullerene-substituted oligopyridines for metallosupramolecular chemistry, Chem. Commun., 2009–2010.Google Scholar
  74. 74.
    Armspach D., Constable E.C., Diederich F., Housecroft C.E. and Nierengarten J-F. (1998) Bucky-ligands: ruthenium complexes, and electrochemical properties, Chem. Eur. J. 4, 723–733.CrossRefGoogle Scholar
  75. 75.
    Diederich F., Echegoyen L., Gomez-Lopez M., Kessinger R. and Stoddart, J.F. (1999) The self-assembly of fullerene-containing [2]pseudorotaxanes: formation of a supramolecular C60 dimer, J. Chem. Soc. Perkin Trans. 2, 1577–1586.Google Scholar
  76. 76.
    Lamparth I., Schick G. and Hirsch A. (1997) Side-chain modifications of C60 via activation of the easily accessible fulleromalonic acid C61(COOH)2, Liebigs Ann., 253–258.Google Scholar
  77. 77.
    Nierengarten J-F., Herrmann A., Tykwinski R.R., Riittimann M., Diederich F., Boudon C., Gisselbrecht J-P. and Gross M. (1997) Methanofullerene molecular scaffolding: towards C60-sub-stituted poly(triacetylenes) and expanded radialenes, preparation of a C60-C70 hybrid derivative, and a novel macrocyclization reaction, Helv. Chim. Acta 80, 293–316.CrossRefGoogle Scholar
  78. 78.
    Felder D., Gutierrez Nava M., Carreon M.P., Eckert J-F., Luccisano M., Schall C., Masson P., Gallani J-L., Heinrich B., Guillon D. and Nierengarten J-F. (2002) Synthesis of amphiphilic fullerene derivatives and their incorporation in Langmuir and Langmuir-Blodge films, Helv. Chim. Acta 85, 288–319.CrossRefGoogle Scholar
  79. 79.
    Nierengarten J-F., Habicher T., Kessinger R., Cardullo F., Diederich F., Gramlich V., Gisselbrecht J-P., Boudon C. and Gross M. (1997) Macrocyclization on the fullerene core: direct regio- and diastereoselective multi-functionalization of [60]fullerene, and synthesis of fullerene-dendrimer derivatives, Helv. Chim. Acta 80, 2238–2276.CrossRefGoogle Scholar
  80. 80.
    Brettreich M. and Hirsch A. (1998) A highly water-soluble dendro[60]fullerene, Tetrahedron Lett. 39, 2731–2734.CrossRefGoogle Scholar
  81. 81.
    Schuster D.I., Wilson S.R., Kirschner A.N., Schinazi R.F., Schlueter-Wirtz S., Tharnish P., Barnett T., Ermolieff J., Tang J., Brettreich M. and Hirsch A. (2000) Evaluation of the anti-HIV potency of a water-soluble dendrimeric fullerene, in Fullerenes-Volume 9-Functionalized fullerenes (Eds. Martin N, Maggini M. and Guldi D.M.), The Electrochemical Society, Pennington, USA, 267–270.Google Scholar
  82. 82.
    Gharbi N., Pressac M., Tomberli V., Da Ros T., Brettreich M., Hadchouel M., Arbeille B., Trivin F., Céolin R., Hirsch A., Prato M., Sware H., Bensasson R.V. and Moussa F. (2000) In Vivo behavior of two C60 derivatives, in Fullerenes-Volume 9-Functionalized fullerenes (Eds. Martin N, Maggini M. and Guldi D.M.), The Electrochemical Society, Pennington, USA, 240–243.Google Scholar
  83. 83.
    Nierengarten J-F. (2000) Fullerodendrimers: a new class of compounds for supramolecular chemistry and materials science applications, Chem. Eur. J. 6, 3667–3670.CrossRefGoogle Scholar
  84. 84.
    Nierengarten J-F., Felder D. and Nicoud J-F. (2000) Methanofullerene-functionalized dendritic branches, Tetrahedron Lett. 41, 41–44.CrossRefGoogle Scholar
  85. 85.
    Felder D., Nierengarten H., Gisselbrecht J-P., Boudon C., Leize E., Nicoud J-F., Gross M., Van Dorsselaer A. and Nierengarten J-F. (2000) Fullerodendrons: synthesis, electrochemistry and reduction in the electrospray source for mass spectrometry analysis, New J. Chem. 24, 687–695.CrossRefGoogle Scholar
  86. 86.
    Pellicciari R., Natalini B., Amori L., Marinozzi M. and Seraglia R. (2000) Synthesis of methano [60]fullerenephosphonic- and methano[60]diphosphonic acids, Synlett., 1816–1818.Google Scholar
  87. 87.
    Nierengarten J-F., Felder D. and Nicoud J-F. (1998) Regioselective bisaddition to C60 with Bis(-β-keto-esters), Tetrahedron Lett. 39, 2747–2750.CrossRefGoogle Scholar
  88. 88.
    Burley G.A., Keller P.A., Pyne S.G. and Ball G.E. (1998) Synthesis of a 1,2-dihydro [60]fulleryl-glycine derivative by a novel cyclopropane ring opening of a methano[60]fullerene, Chem. Commun., 2539–2540.Google Scholar
  89. 89.
    Armaroli N., Diederich F., Echegoyen L., Habicher T., Flamigni L., Marconi G. and Nierengarten J-F. (1999) A new pyridyl-substituted methanofullerene derivative: photophysics, electrochemistry and self-assembly with Zinc(II)-meso-tetraphenylporphyrin (ZnTPP), New J. Chem. 23, 77–83.CrossRefGoogle Scholar
  90. 90.
    Habicher T., Nierengarten J-F., Gramlich V. and Diederich F. (1998) Pt(II) directed self-assembly of a dinuclear cyclophane containing two fullerenes, Angew. Chem. Int. Ed. Engl. 37, 1916–1919.CrossRefGoogle Scholar
  91. 91.
    Bourgeois J-P., Woods C.R., Cardullo F., Habicher T., Nierengarten J-F., Gehrig R. and Diederich F. (2001) Hexakis-adducts of [60]fullerene with different addition patterns: templated synthesis, physical properties, and chemical reactivity, Helv. Chim. Acta 84, 1207–1226.CrossRefGoogle Scholar
  92. 92.
    Bestmann H.J., Hadawi D., Röder T. and Moll C. (1994) 6,6 Überbrückte geschlossene methanofullerene aus C60 und phosphonium-yliden, Tetrahedron Lett. 35, 9017–9020.CrossRefGoogle Scholar
  93. 93.
    Wang Y., Cao J., Schuster D.I. and Wilson S.R. (1995) A superior synthesis of [6,6]-methanofullerenes: the reaction of sulfonium ylides with C60, Tetrahedron Lett. 36, 6843–6846.CrossRefGoogle Scholar
  94. 94.
    Hamada M., Hino T., Kinbara K. and Saigo K. (2001) Synthesis and transformation of a novel methano[60]fullerene having a formyl group, Tetrahedron Lett. 42, 5069–5071.CrossRefGoogle Scholar
  95. 95.
    Hino T., Kinbara K. and Saigo K. (2001) Synthesis of methano[60]fullerene derivatives: the fluoride ion-mediated reaction of [60]fullerene with silylated nucleophiles, Tetrahedron Lett. 42, 5065–5067.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • J.-F. Nierengarten
    • 1
  1. 1.Institut de Physique et Chimie des Matériaux de StrasbourgGroupe des Matériaux OrganiquesStrasbourgFrance

Personalised recommendations