Conifer Cold Hardiness pp 187-219

Part of the Tree Physiology book series (TREE, volume 1) | Cite as

Molecular Biology of Conifer Frost Tolerance and Potential Applications to Tree Breeding

  • David Clapham
  • Inger Ekberg
  • C. H. Anthony Little
  • Outi Savolainen

Abstract

Under natural environmental conditions, frost tolerance is temporally associated with dormancy in the shoots of conifers and other tree species native to the Temperate Zone. Both processes have been extensively studied, particularly in seedlings, but little attempt has been made to separate them experimentally or to distinguish between the various meristems and tissues present in the shoot. In seedlings, the annual cycle in each process can be summarized for both buds and the vascular cambium as follows: (1) shoot extension growth stops and terminal buds (in which leaf primordia are initiated) are set in late summer, after which the cambium ceases growing, bud development occurs and frost tolerance begins to increase; (2) rest (endodormancy) develops in the meristems during autumn after budset and, after exposure to chilling temperatures (about 2 to 10°C), changes into quiescence (ecodormancy) by mid-winter, when frost tolerance is maximal; and (3) frost tolerance is minimal (−3 to −10°C) from budbreak and cambial reactivation in the spring until growth cessation in the autumn (e.g. Riding and Little 1984; Mellerowicz et al. 1992a; Dormling 1993; Qamaruddin et al. 1993; other chapters in this book).

Key words

abscisic acid antifreeze proteins budset circadian timekeeping dehydrins dormancy frost tolerance photoperiod phytochrome Picea Pinus QTL rDNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, M.-L. 1994. Autumn frost hardening of one-year-old Pinus sylvestris (L.) seedlings: effect of origin and parent trees. Scand. J. For. Res. 9: 17–24.CrossRefGoogle Scholar
  2. Allona, I., Quinn, M., Shoop, E., Swope, K., St. Cyr, S., Carlis, J., Riedl, J., Retzel, E., Campbell, M.M., Sederoff, R., and Whetten, R.W. 1998. Analysis of xylem formation in pine by cDNA sequencing. Proc. Natl. Acad. Sci. USA, 95: 9693–9698.PubMedCrossRefGoogle Scholar
  3. Arora, R., and Wisniewski, M.E. 1994. Cold acclimation in genetically related (sibling) deciduous and evergreen peach (Prunus persica [L.] Batsch). II. A 60-kilodalton bark protein in cold-acclimated tissues of peach is heat stable and related to the dehydrin family of proteins. Plant. Physiol. 105: 95–101.PubMedCrossRefGoogle Scholar
  4. Arora, R., and Wisniewski, M. 1996. Accumulation of a 60-kD dehydrin protein in peach xylem tissues and its relationship to cold acclimation. HortScience, 31: 923–925.Google Scholar
  5. Beardmore, T., and Charest, P.J. 1995. Black spruce somatic embryo germination and desiccation tolerance. II. Effect of an abscisic acid treatment on protein synthesis. Can. J. For. Res. 25: 1773–1782.CrossRefGoogle Scholar
  6. Beavis, W.D. 1995. The power and deceit of QTL experiments: lessons from comparative QTL studies. In Proceedings of the ASTA 49th Annual Corn and Sorghum Research Conference, 7–8 Aug. 1994, Chicago, Illinois. pp. 250–265.Google Scholar
  7. Berlyn, G.P., Royte, J.L., and Anoruo, A.O. 1990. Cytophotometric differentiation of high elevation spruces: physiological and ecological implications. Stain Technol. 65: 1–14.PubMedGoogle Scholar
  8. Binnie, S.C., Grossnickle, S.C., and Roberts, D.R. 1994. Fall acclimation patterns of interior spruce seedlings and their relationship to changes in vegetative storage proteins. Tree Physiol. 14: 1107–1120.PubMedCrossRefGoogle Scholar
  9. Blake, T.J., Bevilacqua, E., Hunt, G.A., and Abrams, S.R. 1990. Effects of abscisic acid and its acetylenic alcohol on dormancy, root development and transpiration in three conifer species. Physiol. Plant. 80: 371–378.CrossRefGoogle Scholar
  10. Bobb, A.J., Eiben, H.G., and Bustos, M.M. 1995. PvAlf, an embryo-specific acidic transcriptional activator enhances gene expression from phaseolin and phytohemagglutinin promoters. Plant J. 8: 331–343.PubMedCrossRefGoogle Scholar
  11. Bradshaw, H.D. Jr., and Stealer, R.F. 1995. Molecular genetics of growth and development in Populus. IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. Genetics, 139: 963–973.PubMedGoogle Scholar
  12. Brush, R.A., Griffith, M., and Mlynarz, A. 1994. Characterization and quantification of intrinsic ice nucleators in winter rye (Secale cereale) leaves. Plant Physiol. 104: 725–735.PubMedGoogle Scholar
  13. Burn, J.E., Smyth, D.R., Peacock, W.J., and Dennis, E.S. 1993. Genes conferring late flowering in Arabidopsis. Genetica, 90: 147–155.CrossRefGoogle Scholar
  14. Byrne, M., Murrell, J.C., Owen, J.V., Williams, E.R., and Moran, G.F. 1997. Mapping of quantitative trait loci influencing frost tolerance in Eucalyptus nitens. Theor. Appl. Genet. 95: 975–979.CrossRefGoogle Scholar
  15. Cannell, M.G.R., and Sheppard, L.J. 1982. Seasonal changes in the frost hardiness of provenances of Picea sitchensis in Scotland. Forestry, 55: 137–153.CrossRefGoogle Scholar
  16. Catesson, A.-M. 1990. Cambial cytology and biochemistry. In The vascular cambium. Edited by M. Iqbal. John Wiley & Sons, Inc., New York. pp. 63–112.Google Scholar
  17. Cavalier-Smith, T. 1985. Cell volume and the evolution of eukaryotic genome size. In The evolution of genome size. Edited by T. Cavalier-Smith. John Wiley & Sons Ltd., Chichester, UK. pp. 105–184.Google Scholar
  18. Chandler, P.M., and Robertson, M. 1994. Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 113–141.CrossRefGoogle Scholar
  19. Chang, S., Puryear, J., Funkhouser, E.A., Newton, R.J., and Cairney, J. 1996. Cloning of a cDNA for a chitinase homologue which lacks chitin-binding sites and is down-regulated by water stress and wounding. Plant Mol. Biol. 31: 693–699.PubMedCrossRefGoogle Scholar
  20. Childs, K.L., Miller, F.R., Cordonier-Pratt, M.-M., Pratt, L.H., Morgan, P.W., and Mullet, J.E. 1997. The sorghum photoperiod sensitivity gene, Ma i, encodes a phytochrome B1. Plant Physiol. 113: 611–619.PubMedCrossRefGoogle Scholar
  21. Christersson, L. 1978. The influence of photoperiod and temperature on the development of frost hardiness in seedlings of Pinus silvestris and Picea abies. Physiol. Plant. 44: 288–294.CrossRefGoogle Scholar
  22. Clack, T., Mathews, S., and Sharrock, R.A. 1994. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Mol. Biol. 25: 413–427.PubMedCrossRefGoogle Scholar
  23. Clapham, D.H., von Arnold, S., Dormling, I., Ekberg, I., Eriksson, G., Larsson, C.-T., Norell, L., and Qamaruddin, M. 1994. Variation in total and specific RNA during inwintering of two contrasting populations of Picea abies. Physiol. Plant. 90: 504–512.CrossRefGoogle Scholar
  24. Clapham, D.H., Dormling, I., Ekberg, I., Eriksson, G., Qamaruddin, M., and Vince-Prue, D. 1998a. Latitudinal cline of requirement for far-red light for the photoperiodic control of budset and extension growth in Picea abies (Norway spruce). Physiol. Plant. 102: 71–78.CrossRefGoogle Scholar
  25. Clapham, D., Ekberg, I., Dormling, I., Eriksson, G., Qamaruddin, M., and Vince-Prue, D. 1998b. Dormancy: night timekeeping and day timekeeping for the photoperiodic control of budset in Norway spruce. In Biological rhythms and photoperiodism in plants. Edited by P.J. Lumsden and A.J. Millar. BIOS Scientific Publishers Ltd, Oxford, UK. pp. 195–209.Google Scholar
  26. Clapham, D.H., Kolukisaoglu, H.Ü., Larsson, C.-T., Qamaruddin, M., Ekberg, I., WiegmannEirund, C., Schneider-Poetsch, H.A.W., and von Arnold, S. 1999a. Phytochromes types in Picea and Pinus. Expression patterns of PHYA-related types. Plant Mol. Biol. 40: 669–678.PubMedCrossRefGoogle Scholar
  27. Clapham, D.H., Newton, R.J., Sen, S., and von Arnold, S. 1999b. Transformation of Picea species. In Molecular biology of woody plants. Edited by S.M. Jain and S.C. Minocha. Kluwer Academic Publishers, Dordrecht. (In press).Google Scholar
  28. Clarke, J.H., and Dean, C. 1994. Mapping FRI, a locus controlling flowering time and vernalization response in Arabidopsis thaliana. Mol. Gen. Genet. 242: 81–89.PubMedGoogle Scholar
  29. Close, T.J. 1996. Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol. Plant. 97: 795–803.CrossRefGoogle Scholar
  30. Close, T.J. 1997. Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol. Plant. 100: 291–296.CrossRefGoogle Scholar
  31. Close, T.J., Fenton, R.D., and Moonan, F. 1993. A view of plant dehydrins using antibodies specific to the carboxy terminal peptide. Plant Mol. Biol. 23: 279–286.PubMedCrossRefGoogle Scholar
  32. Coleman, G.D. 1997. Seasonal vegetative storage proteins of poplar. In Micropropagation, genetic engineering, and molecular biology of Populus. Edited by N.B. Klopfenstein, Y.W. Chun, M.-S. Kim, and M.R. Ahuja. USDA For. Serv. Gen. Tech. Rep. RM-297. pp. 124–130.Google Scholar
  33. Cottignies, A. 1979. The blockage in the G1 phase of the cell cycle in the dormant shoot apex of ash. Planta, 147: 15–19.CrossRefGoogle Scholar
  34. D’Aoust, A.L., and Hubac, C. 1986. Phytochrome action and frost hardening in black spruce seedlings. Physiol. Plant. 67: 141–144.CrossRefGoogle Scholar
  35. Dong, J.-Z., and Dunstan, D.I. 1997. Endochitinase and beta-1,3-glucanase genes are developmentally regulated during somatic embryogenesis in Picea glauca. Planta, 201: 189–194.PubMedCrossRefGoogle Scholar
  36. Dormling, I. 1973. Photoperiodic control of growth and growth cessation in Norway spruce seedlings. Proceedings of the IUFRO Division 2, Working party 2.01.4, Symposium on Dormancy in Trees, 5–9 Sept., Kornik.Google Scholar
  37. Dormling, I. 1993. Bud dormancy, frost hardiness, and frost drought in seedlings of Pinus sylvestris and Picea abies. In Advances in plant cold hardiness. Edited by P.H. Li and L. Christersson. CRC Press, Boca Raton, FL. pp. 285–298.Google Scholar
  38. Dormling, I., Gustafsson, A., and von Wettstein, D. 1968. The experimental control of the life cycle in Picea abies (L.) Karst. I. Some basic experiments on the vegetative cycle. Silvae Genet. 17: 44–64.Google Scholar
  39. Duman, J.G., and Olsen, T.M. 1993. Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants. Cryobiology, 30: 322–328.CrossRefGoogle Scholar
  40. Ekberg, I., Dormling, I., Eriksson, G., and von Wettstein, D. 1976. Inheritance of the photoperiodic response in forest trees. In Tree physiology and yield improvement. Edited by M.G.R. Cannell and F.T. Last. Academic Press Limited, London. pp. 207–221.Google Scholar
  41. Eklund, L., and Little, C.H.A. 1995. Interaction between indole-3-acetic acid and ethylene in the control of tracheid production in detached shoots of Abies balsamea. Tree Physiol. 15: 27–34.PubMedCrossRefGoogle Scholar
  42. Eklund, L., Little, C.H.A., and Riding, R.T. 1998. Concentrations of oxygen and indole-3acetic acid in the cambial region during latewood formation and dormancy development in Picea abies stems. J. Exp. Bot. 49: 205–211.Google Scholar
  43. Ekramoddoullah, A.K.M., and Taylor, D.W. 1996. Seasonal variation of western white pine (Pinus monticola D. Don) foliage proteins. Plant Cell Physiol. 37: 189–199.PubMedCrossRefGoogle Scholar
  44. Ekramoddoullah, A.K.M., Taylor, D., and Hawkins, B.J. 1995. Characterization of a fall protein of sugar pine and detection of its homologue associated with frost hardiness of western white pine needles. Can. J. For. Res. 25: 1137–1147.CrossRefGoogle Scholar
  45. Giraudat J., Hauge, B.M., Valon, C., Smalle, J., Parcy, F., and Goodman, H.M. 1992. Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell, 4: 1251–1261.PubMedGoogle Scholar
  46. Griffith, M., Antikainen, M., Hon, W.-C., Pihakaski-Maunsbach, K., Yu, X.-M., Chun, J.U., and Yang, D.S.C. 1997. Antifreeze proteins in winter rye. Physiol. Plant. 100: 327–332.CrossRefGoogle Scholar
  47. Grime, J.P., Shacklock, J.M.L., and Band, S.R. 1985. Nuclear DNA contents, shoot phenology and species co-existence in a limestone grassland community. New Phytol. 100: 435–445.CrossRefGoogle Scholar
  48. Gusta, L.V., Wilen, R.W., and Fu, P. 1996. Low-temperature stress tolerance: the role of abscisic acid, sugars, and heat-stable proteins. HortScience, 31: 39–46.Google Scholar
  49. Guy, C.L., Niemi, K.J., and Brambl, R. 1985. Altered gene expression during cold acclimation of spinach. Proc. Natl. Acad. Sci. USA, 82: 3673–3677.PubMedCrossRefGoogle Scholar
  50. Häggman, H. 1986. In vitro translation capacity of ribosomes isolated from the cells of pine buds during the cold season. Physiol. Plant. 66: 144–148.CrossRefGoogle Scholar
  51. Häggman, H., Hohtola, A., and Kupila-Ahvenniemi, S. 1985. Variation in the polysome assembly and incorporation of [3H]-uridine in the cells of pine buds during the cold season. Physiol. Plant. 65: 409–417.CrossRefGoogle Scholar
  52. Halliday, K.J., Thomas, B., and Whitelam, G.C. 1997. Expression of heterologous phytochromes A, B or C in transgenic tobacco plants alters vegetative development and flowering time. Plant J. 12: 1079–1090.PubMedCrossRefGoogle Scholar
  53. Harms, U., and Sauter, J.J. 1991. Storage proteins in the wood of Taxodiaceae and of Taxus. J. Plant Physiol. 138: 497–499.CrossRefGoogle Scholar
  54. Harms, U., and Sauter, J.J. 1994. Biochemical and immunological investigations on vegetative storage proteins of Taxodiaceae species. J. Plant Physiol. 143: 601–608.CrossRefGoogle Scholar
  55. Hattori, T., Vasil, V., Rosenkrans, L., Hannah, L.C., McCarty, D.R., and Vasil, I.K. 1992. The Viviparous-1 gene and abscisic acid activate the Cl regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Genes Dev. 6: 609–618.PubMedCrossRefGoogle Scholar
  56. Heide, O.M. 1974. Growth and dormancy in Norway spruce ecotypes (Picea abies). I. Interaction of photoperiod and temperature. Physiol. Plant. 30: 1–12.CrossRefGoogle Scholar
  57. Heide, O.M. 1986. Effects of ABA application on cessation of shoot elongation in long-day grown Norway spruce seedlings. Tree Physiol. 1: 79–83.PubMedCrossRefGoogle Scholar
  58. Hoecker, U., Vasil, I.K., and McCarty, D.R. 1995. Integrated control of seed maturation and germination programs by activator and repressor functions of Viviparous-1 of maize. Genes Dev. 9: 2459–2469.PubMedCrossRefGoogle Scholar
  59. Holappa, L.D., and Walker-Simmons, M.K. 1995. The wheat abscisic acid-responsive protein kinase mRNA, PKABA1, is up-regulated by dehydration, cold temperature, and osmotic stress. Plant Physiol. 108: 1203–1210.PubMedGoogle Scholar
  60. Hon, W.-C., Griffith, M., Mlynarz, A., Kwok, Y.C., and Yang, D.S.C. 1995. Antifreeze proteins in winter rye are similar to pathogenesis-related proteins. Plant Physiol. 109: 879–889.PubMedCrossRefGoogle Scholar
  61. Howe, G.T., Gardner, G., Hackett, W.P., and Furnier, G.R. 1996. Phytochrome control of short-day-induced bud set in black cottonwood. Physiol. Plant. 97: 95–103.CrossRefGoogle Scholar
  62. Howe, G.T., Bucciaglia, P.A., Hackett, W.P., Furnier, G.R., Cordonnier-Pratt, M.-M., and Gardner, G. 1998. Evidence that the phytochrome gene family in black cottonwood has one PHYA locus and two PHYB loci but lacks members of the PHYC/F and PHYE subfamilies. Mol. Biol. Evol. 15: 160–175.PubMedCrossRefGoogle Scholar
  63. Hurme, P., Repo, T., Savolainen, O., and Pääkkönen, T. 1997. Climatic adaptation of bud set and frost hardiness in Scots pine (Pinus sylvestris). Can. J. For. Res. 27: 716–723.CrossRefGoogle Scholar
  64. Hurme, P., Sillanpää, M., Arjas, E., Repo, T., and Savolainen, O. 1999. Mapping adaptive trait QTLs and viability loci in Scots pine. In Abstracts of the Plant and Animal Genome VII Conference, 17–21 Jan., San Diego, CA.Google Scholar
  65. Ishitani, M., Xiong, L., Stevenson, B., and Zhu, J.-K. 1997. Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell, 9: 1935–1949.PubMedGoogle Scholar
  66. Jackson, S., and Thomas, B. 1997. Photoreceptors and signals in the photoperiodic control of development. Plant Cell Environ. 20: 790–795.CrossRefGoogle Scholar
  67. Jarvis, S.B., Taylor, M.A., MacLeod, M.R., and Davies, H.V. 1996. Cloning and characterisation of the cDNA clones of three genes that are differentially expressed during dormancy-breakage in the seeds of Douglas fir (Pseudotsuga menziesii). J. Plant Physiol. 147: 559–566.CrossRefGoogle Scholar
  68. Jenkins, P.A. 1974. Influence of applied indoleacetic acid and abscisic acid on xylem cell dimensions in Pinus radiata D. D.n. R. Soc. N.Z. Bull. 12: 737–742.Google Scholar
  69. Jermstad, K., Bassoni, D., Jech, K., Wheeler, N.C., Anekonda, T., Aitken, S., Adams, T.W., and Neale, D.B. 1999. QTL affecting bud flush and cold-hardiness in coastal Douglas-Fir. In Abstracts of the Plant and Animal Genome VII Conference, 17–21 Jan., San Diego, CA.Google Scholar
  70. Johansen, L.G., Odén, P.-C., and Junttila, O. 1986. Abscisic acid and cessation of apical growth in Salix pentandra. Physiol. Plant. 66: 409–412.CrossRefGoogle Scholar
  71. Johnsen, 0, Skreppa, T., and Daehlen, O.G. 1996. Influence of the female flowering environment on autumn frost-hardiness of Picea abies progenies. Theor. Appl. Genet. 92: 797–802.CrossRefGoogle Scholar
  72. Johnson, E., Bradley, M., Harberd, N.P., and Whitelam, G.C. 1994. Photoresponses of light-grown phyA mutants of Arabidopsis. Plant Physiol. 105: 141–149.PubMedCrossRefGoogle Scholar
  73. Johnson-Flanagan, A.M., and Singh, J. 1988. Protein synthesis and freezing tolerance in plant cells. CRC Crit. Rev. Plant Sci. 7: 279–302.CrossRefGoogle Scholar
  74. Kearsey, M.J., and Farquhar, A.G.L. 1998. QTL analysis in plants; where are we now? Heredity, 80: 137–142.PubMedCrossRefGoogle Scholar
  75. Koornneef, M., Reuling, G., and Karssen, C.M. 1984. The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol. Plant. 61: 377–383.CrossRefGoogle Scholar
  76. Kuittinen, H., Sillanpää, M.J., and Savolainen, O. 1997. Genetic basis of adaptation: flowering time in Arabidopsis thaliana. Theor. Appl. Genet. 95: 573–583.CrossRefGoogle Scholar
  77. Kupila-Ahvenniemi, S. 1966. Physiological and morphological study on the vegetative and floral primordia of the Scotch pine during the dormancy and the period of bud enlargement. Aquilo Ser. Bot. 4: 59–79.Google Scholar
  78. Kupila-Ahvenniemi, S. 1978. Structure of interphase nuclei and scarcity of nucleoli in Scotch pine from northern locations. Ann. Bot. Fenn. 15: 92–100.Google Scholar
  79. Kupila-Ahvenniemi, S. 1985. Effect of changes in the environment on the ribosome assembly in the buds of Scotch pine. Aquilo Ser. Bot. 23: 17–22.Google Scholar
  80. Kupila-Ahvenniemi, S., Lindfors, A., and Häggman, H. 1987. Seasonal variations in the properties of ribosome assemblies from vegetative buds of Scots pine. Physiol. Plant. 71: 55–60.CrossRefGoogle Scholar
  81. Kvarnheden, A., Tandre, K., and Engström, P. 1995. A cdc2 homologue and closely related processed retropseudogenes from Norway spruce. Plant Mol. Biol. 27: 391–403.Google Scholar
  82. Larson, P.R. 1994. The vascular cambium: development and structure. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  83. Leal, I., and Misra, S. 1993. Developmental gene expression in conifer embryogenesis and germination. III. Analysis of crystalloid protein mRNAs and desiccation protein mRNAs in the developing embryo and megagametophyte of white spruce (Picea glauca (Moench) Voss). Plant Sci. 88: 25–37.CrossRefGoogle Scholar
  84. Leinonen, I. 1996. A simulation model for the annual frost hardiness and freeze damage of Scots pine. Ann. Bot. 78: 687–693.CrossRefGoogle Scholar
  85. Lelu, M.-A., and Pilate, G. 1999. Transgenics in Larix. In Molecular biology of woody plants. Edited by S.M. Jain and S.C. Minocha. Kluwer Academic Publishers, Dordrecht. (In press).Google Scholar
  86. Little, C.H.A., and Bonga, J.M. 1974. Rest in the cambium of Abies balsamea. Can. J. Bot. 52: 1723–1730.CrossRefGoogle Scholar
  87. Little, C.H.A., and Eidt, D.C. 1968. Effect of abscisic acid on budbreak and transpiration in woody species. Nature, 220: 498–499.CrossRefGoogle Scholar
  88. Little, C.H.A., and Pharis, R.P. 1995. Hormonal control of radial and longitudinal growth in the tree stem. In Plant stems: physiology and functional morphology. Edited by B.L. Gartner. Academic Press, Inc., San Diego, CA. pp. 281–319.Google Scholar
  89. Little, C.H.A., and Wareing, P.F. 1981. Control of cambial activity and dormancy in Picea sitchensis by indol-3-ylacetic and abscisic acids. Can. J. Bot. 59: 1480–1493.CrossRefGoogle Scholar
  90. Lloyd, A.D., Mellerowicz, E.J., Chow, C.H., Riding, R.T., and Little, C.H.A. 1994. Fluctuations in ribosomal RNA gene content and nucleolar activity in the cambial region of Abies balsamea (Pinaceae) shoots during reactivation. Am. J. Bot. 81: 1384–1389.CrossRefGoogle Scholar
  91. Lloyd, A.D., Mellerowicz, E.J., Riding, R.T., and Little, C.H.A. 1996. Changes in nuclear genome size and relative ribosomal RNA gene content in cambial region cells of Abies balsamea shoots during the development of dormancy. Can. J. Bot. 74: 290–298.CrossRefGoogle Scholar
  92. Lumsden, P.J. 1991. Circadian rhythms and phytochrome. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 351–371.CrossRefGoogle Scholar
  93. Lumsden, P.J., and Millar, A.J. 1998. Biological rhythms and photoperiodism in plants. BIOS Scientific Publishers Ltd, Oxford, UK.Google Scholar
  94. Lynch, M., and Walsh, B. 1998. Genetics and analysis of quantitative traits. Sinauer Associates, Inc., Sunderland, MA, USA.Google Scholar
  95. MacGillivray, C.W., and Grime, J.P. 1995. Genome size predicts frost resistance in British herbaceous plants: implications for rates of vegetation response to global warming. Funct. Ecol. 9: 320–325.CrossRefGoogle Scholar
  96. Mathews, S., and Sharrock, R.A. 1997. Phytochrome gene diversity. Plant Cell Environ. 20: 666–671.CrossRefGoogle Scholar
  97. Mellerowicz, E.J., and Riding, R.T. 1992. Does DNA endoreduplication occur during differentiation of secondary xylem and phloem in Abies balsamea Int. J. Plant Sci. 153: 26–30.CrossRefGoogle Scholar
  98. Mellerowicz, E.J., Riding, R.T., and Little, C.H.A. 1989. Genomic variability in the vascular cambium of Abies balsamea. Can. J. Bot. 67: 990–996.Google Scholar
  99. Mellerowicz, E.J., Coleman, W.K., Riding, R.T., and Little, C.H.A. 1992a. Periodicity of cambial activity in Abies balsamea. I. Effects of temperature and photoperiod on cambial dormancy and frost hardiness. Physiol. Plant. 85: 515–525.CrossRefGoogle Scholar
  100. Mellerowicz, E.J., Riding, R.T., and Little, C.H.A. 1992b. Periodicity of cambial activity in Abies balsamea. II. Effects of temperature and photoperiod on the size of the nuclear genome in fusiform cambial cells. Physiol. Plant. 85: 526–530.CrossRefGoogle Scholar
  101. Mellerowicz, E.J., Riding, R.T., and Little, C.H.A. 1993. Nuclear activity in the fusiform cambial cells of Abies balsamea (Pinaceae): effect of season and age. Am. J. Bot. 80: 1168–1174.CrossRefGoogle Scholar
  102. Mellerowicz, E.J., Riding, R.T., and Greenwood, M.S. 1995. Nucleolar and cytoplasmic changes associated with maturation in the vascular cambium of Larix laricina. Tree Physiol. 15: 443–449.PubMedCrossRefGoogle Scholar
  103. Mikola, J. 1982. Bud-set phenology as an indicator of climatic adaptation in Scots pine. Silva Fenn. 16: 178–184.Google Scholar
  104. Miksche, J.P. 1968. Quantitative study of intraspecific variation of DNA per cell in Picea glauca and Pinus banksiana. Can. J. Genet. Cytol. 10: 590–600.Google Scholar
  105. Miksche, J.P. 1971. Intraspecific variation of DNA per cell between Picea sitchensis (Bong.) Carr. provenances. Chromosoma, 32: 343–352.PubMedCrossRefGoogle Scholar
  106. Mohapatra S.S., Poole, R.J., Dhindsa, R.S. 1988. Abscisic acid-regulated gene expression in relation to freezing tolerance in alfalfa. Plant Physiol. 87: 468–473.PubMedCrossRefGoogle Scholar
  107. Mozley, D., and Thomas, B. 1995. Developmental and photobiological factors affecting photoperiodic induction in Arabidopsis thaliana Heynh. Landsberg erecta. J. Exp. Bot. 46: 173–179.CrossRefGoogle Scholar
  108. Murray, B.G. 1998. Nuclear DNA amounts in gymnosperms. Ann. Bot. 82 (Supplement A): 3–15.CrossRefGoogle Scholar
  109. Nambara, E. Naito, S., and McCourt, P. 1992. A mutant of Arabidopsis which is defective in seed development and storage protein accumulation is a new abi3 allele. Plant J. 2: 435–441.CrossRefGoogle Scholar
  110. Nambara, E., Keith, K., McCourt, P., and Naito, S. 1994. Isolation of an internal deletion mutant of the Arabidopsis thaliana ABI3 gene. Plant Cell Physiol. 35: 509–513.PubMedGoogle Scholar
  111. Norell, L., Eriksson, G., Ekberg, I., and Dormling, I. 1986. Inheritance of autumn frost hardiness in Pinus sylvestris L. seedlings. Theor. Appl. Genet. 72: 440–448.CrossRefGoogle Scholar
  112. Nuotio, S., Häggman, H., and Kupila-Ahvenniemi, S. 1990. Changes in gene expression of Scots pine buds during the winter and under experimentally altered light and temperature conditions. Physiol. Plant. 78: 511–518.CrossRefGoogle Scholar
  113. Ohri, D., and Khoshoo, T.N. 1986. Genome size in gymnosperms. Plant Syst. Evol. 153: 119–132.CrossRefGoogle Scholar
  114. Olsen, J.E., Junttila, O., Nilsen, J., Eriksson, M.E., Martinussen, I., Olsson, O., Sandberg, G., and Moritz, T. 1997. Ectopic expression of oat phytochrome A in hybrid aspen changes critical daylength for growth and prevents cold acclimatization. Plant J. 12: 1339–1350.CrossRefGoogle Scholar
  115. Ooms, J.J.J., Léon-Kloosterziel, K.M., Bartels, D., Koomneef, M., and Karssen, C.M. 1993. Acquisition of desiccation tolerance and longevity in seeds of Arabidopsis thaliana. A comparative study using abscisic acid-insensitive abi3 mutants. Plant. Physiol. 102: 1185–1191.PubMedGoogle Scholar
  116. Oribe, Y., and Kubo, T. 1997. Effect of heat on cambial reactivation during winter dormancy in evergreen and deciduous conifers. Tree Physiol. 17: 81–87.PubMedCrossRefGoogle Scholar
  117. Owens, J.N., and Molder, M. 1973. A study of DNA and mitotic activity in the vegetative apex of Douglas fir during the annual growth cycle. Can. J. Bot. 51: 1395–1409.CrossRefGoogle Scholar
  118. Palva, E.T., Welin, B., Vahala, T., Olson, A, Nordin-Henriksson, K., Mäntylä, E., and Lang, V. 1994. Regulation of low temperature-induced genes during cold acclimation of Arabidopsis thaliana. In Biochemical and cellular mechanisms of stress tolerance in plants. Edited by J.H. Cherry. NATO ASI (Adv. Sci. Inst.) Ser. Ser. H (Cell Biol.). Vol. 86. Springer-Verlag, Berlin. pp. 527–542.CrossRefGoogle Scholar
  119. Parcy, F., Valon, C., Raynal, M., Gaubier-Comella, P., Delseny, M., and Giraudat, J. 1994. Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell, 6: 1567–1582.PubMedGoogle Scholar
  120. Qamaruddin, M., Dormling, I., Ekberg, I., Eriksson, G., and Tillberg, E. 1993. Abscisic acid content at defined levels of bud dormancy and frost tolerance in two contrasting populations of Picea abies grown in a phytotron. Physiol. Plant. 87: 203–210.CrossRefGoogle Scholar
  121. Qamaruddin, M., Ekberg, I., Dormling, I., Norell, L., Clapham, D., and Eriksson, G. 1995. Early effects of long nights on budset, bud dormancy and abscisic acid content in two populations of Picea abies. Forest Genet. 2: 207–216.Google Scholar
  122. Qin, M., Kuhn, R., Moran, S., and Quail, P.H. 1997. Overexpressed phytochrome C has similar photosensory specificity to phytochrome B but a distinctive capacity to enhance primary leaf expansion. Plant J. 12: 1163–1172.PubMedCrossRefGoogle Scholar
  123. Quail, P.H. 1994. Phytochrome genes and their expression. In Photomorphogenesis in plants. 2nd ed. Edited by R.E Kendrick and G.H.M. Kronenberg. Kluwer Academic Publishers, Dordrecht. pp. 71–104.CrossRefGoogle Scholar
  124. Quail, P.H., Boylan, M.T., Parks, B.M., Short, T.W., Xu, Y., and Wagner, D. 1995. Phytochromes: photosensory perception and signal transduction. Science, 268: 675–680.PubMedCrossRefGoogle Scholar
  125. Riding, R.T., and Little, C.H.A. 1984. Anatomy and histochemistry of Abies balsamea cambial zone cells during the onset and breaking of dormancy. Can. J. Bot. 62: 2570–2579.CrossRefGoogle Scholar
  126. Riding, R.T., and Little, C.H.A. 1986. Histochemistry of the dormant vascular cambium of Abies balsamea: changes associated with tree age and crown position. Can. J. Bot. 64: 2082–2087.CrossRefGoogle Scholar
  127. Rinne, P., Welling, A., and Kaikuranta, P. 1998. Onset of freezing tolerance in birch (Betula pubescens Ehrh.) involves LEA proteins and osmoregulation and is impaired in an ABA-deficient genotype. Plant Cell Environ. 21: 601–611.CrossRefGoogle Scholar
  128. Roberts, D.R., Toivonen, P., and McInnis, S.M. 1991. Discrete proteins associated with overwintering of interior spruce and Douglas-fir seedlings. Can. J. Bot. 69: 437–441.CrossRefGoogle Scholar
  129. Rohde, A., Van Montagu, M., and Boerjan, W. 1996. Molecular approaches to study bud dormancy in Populus. In Somatic cell genetics and molecular genetics of trees. Edited by M.R. Ahuja, W. Boerjan, and D.B. Neale. Kluwer Academic Publishers, Dordrecht. pp. 183–188.CrossRefGoogle Scholar
  130. Rohde, A., Van Montagu, M., Inzé, D., and Boerjan, W. 1997. Factors regulating the expression of cell cycle genes in individual buds of Populus. Planta, 201: 43–52.CrossRefGoogle Scholar
  131. Rohde, A., Ardiles-Diaz, W., Van Montagu, M., and Boerjan, W. 1998. Isolation and expression analysis of an ABSCISIC ACID-INSENSITIVE 3 (ABI3) homologue from Populus trichocarpa. J. Exp. Bot. 49: 1059–1060.Google Scholar
  132. Rowland, L.J., and Arora, R. 1997. Proteins related to endodormancy (rest) in woody perennials. Plant Sci. 126: 119–144.CrossRefGoogle Scholar
  133. Sabala, I., Egertsdotter, U., von Firks, H., and von Arnold, S. 1996. Abscisic acid-induced secretion of an antifreeze-like protein in embryogenic cell lines of Picea abies. J. Plant Physiol. 149: 163–170.CrossRefGoogle Scholar
  134. Sabala, I., Franzén, H., and von Arnold, S. 1997. A spruce gene, af70, constitutively expressed in somatic embryos and induced by ABA and low temperature in seedlings. Physiol. Plant. 99: 316–322.CrossRefGoogle Scholar
  135. Sakai, A., and Larcher, W. 1987. Frost survival of plants. Responses and adaptation to freezing stress. Ecological Studies Vol. 62. Springer-Verlag, Berlin.Google Scholar
  136. Savolainen, O.A., and Hurme, P.K. 1997. Conifers from the cold. In Environmental stress, adaptation and evolution. Edited by R. Bijlsma and V. Loeschcke. Birkhaeuser Verlag, Basel. pp. 43–62.CrossRefGoogle Scholar
  137. Schena, M., Shalon, D., Davis, R., and Brown, P. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270: 467–470.PubMedCrossRefGoogle Scholar
  138. Schneider-Poetsch, H.A.W., Kolukisaoglu, U., Clapham D.H., Hughes, J., and Lamparter, T. 1998. Non-angiosperm phytochromes and the evolution of vascular plants. Physiol. Plant. 102: 612–622.CrossRefGoogle Scholar
  139. Sewell, M.M., and D.B. Neale. 1999. Mapping quantitative traits in forest trees. In Molecular biology of woody plants. Edited by S.M. Jain and S.C. Minocha. Kluwer Academic Publishers, Dordrecht. (In press).Google Scholar
  140. Sharrock, R.A., and Quail, P.H. 1989. Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev. 3: 1745–1757.PubMedCrossRefGoogle Scholar
  141. Singh, J., and Laroche, A. 1988. Freezing tolerance in plants: a biochemical overview. Biochem. Cell Biol. 66: 650–657.CrossRefGoogle Scholar
  142. Sitbon, F., Eklöf, S., Riding, R.T., Sandberg, G., Olsson, O., and Little, C.H.A. 1993. Patterns of protein synthesis in the cambial region of Scots pine shoots during reactivation. Physiol. Plant. 87: 601–608.CrossRefGoogle Scholar
  143. Smith, H. 1995. Physiological and ecological function within the phytochrome family. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 289–315.CrossRefGoogle Scholar
  144. Smith, H. Xu, Y., and Quail, P.H. 1997. Antagonistic but complementary actions of phytochromes A and B allow optimum seedling de-etiolation. Plant Physiol. 114: 637–641.PubMedCrossRefGoogle Scholar
  145. Somers, D.E., and Kay, S.A. 1998. Genetic approaches to the analysis of circadian rhythm in plants. In Biological rhythms and photoperiodism in plants. Edited by P.J. Lumsden and A.J. Millar. BIOS Scientific Publishers Ltd, Oxford, UK. pp. 81–98.Google Scholar
  146. Staswick, P.E. 1994. Storage proteins of vegetative plant tissues. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 303–322.CrossRefGoogle Scholar
  147. Stepien, V., Sauter, J.J., and Martin, F. 1994. Vegetative storage proteins in woody plants. Plant Physiol. Biochem. 32: 185–192.Google Scholar
  148. Sterky, F., Regan, S., Karlsson, J., Hertzberg, M., Rohde, A., Holmberg, A., Amini, B., Bhalerao, R., Larsson, M., Villarroel, R., Van Montagu, M., Sandberg, G., Olsson, O., Teeri, T. T., Boerjan, W., Gustafsson, P., Uhlen, M., Sundberg, B., and Lundeberg, J. 1998. Gene discovery in the wood-forming tissues of poplar: analysis of 5,692 expressed sequence tags. Proc. Nat. Acad. Sci. USA, 95: 13330–13335.PubMedCrossRefGoogle Scholar
  149. Tanksley, S.D. 1993. Mapping polygenes. Annu. Rev. Genet. 27: 205–233.PubMedCrossRefGoogle Scholar
  150. Tepfer, S.S., Nougarède, A., and Rondet, P. 1981. Seasonal studies of vegetative buds of Helianthus tuberosus: concentration of nuclei in phase G1 during winter dormancy. Can. J. Bot. 59: 1918–1927.CrossRefGoogle Scholar
  151. Thomas, B., and Vince-Prue, D. 1995. Do long-day plants and short-day plants perceive daylength in the same way? Flower. Newsl. 20: 50–57.Google Scholar
  152. Thomas B., and Vince-Prue, D. 1997. Photoperiodism in plants. 2nd ed. Academic Press Limited, London.Google Scholar
  153. Thomashow, M.F. 1998. Role of cold-responsive genes in plant freezing tolerance. Plant Physiol. 118: 1–7.PubMedCrossRefGoogle Scholar
  154. Thomashow, M.F. 1999. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 571–599.PubMedCrossRefGoogle Scholar
  155. Thümmler, F., and Dittrich, P. 1995. Phytochrome represents a small gene family in Picea abies: six partial sequences (Accession Nos. U38363 to U38368) encoding at least three different phytochrome isotypes. Plant Physiol. 109: 1498.Google Scholar
  156. Trewavas, A. 1981. How do plant growth substances work? Plant Cell Environ. 4: 203–228.Google Scholar
  157. Trewavas, A. 1991. How do plant growth substances work? II. Plant Cell Environ. 14: 1–12.CrossRefGoogle Scholar
  158. Uggla, C., Moritz, T., Sandberg, G., and Sundberg, B. 1996. Auxin as a positional signal in pattern formation in plants. Proc. Natl. Acad. Sci. USA, 93: 9282–9286.PubMedCrossRefGoogle Scholar
  159. Vasil, V., Marcotte, W.R. Jr., Rosenkrans, L., Cocciolone, S.M., Vasil, I.K., Quatrano, R.S., and McCarty, D.R. 1995. Overlap of Viviparous) (VP1) and abscisic acid response elements in the Em promoter: G-box elements are sufficient but not necessary for VP1 transactivation. Plant Cell, 7: 1511–1518.PubMedGoogle Scholar
  160. Vince-Prue, D. 1984. Contrasting types of photoperiodic response in the control of dormancy. Plant Cell Environ. 7: 507–513.Google Scholar
  161. Vince-Prue, D. 1994. The duration of light and photoperiodic responses. In Photomorphogenesis in plants. 2nd ed. Edited by R.E. Kendrick and G.H.M. Kronenberg. Kluwer Academic Publishers, Dordrecht. pp. 447–490.CrossRefGoogle Scholar
  162. von Fircks, H.A., and Christersson, L. 1982. Artificial ice crystal formation in excised short shoots of Pinus silvestris L. Physiol. Plant. 54: 386–392.CrossRefGoogle Scholar
  163. Wakamiya, I., Newton, R.J., Johnston, J.S., and Price, H.J. 1993. Genome size and environmental factors in the genus Pinus. Am. J. Bot. 80: 1235–1241.CrossRefGoogle Scholar
  164. Walter, C., and Grace, L.J. 1999. Genetic engineering of conifers for plantation forestry: Pinus radiata transformation. In Molecular biology of woody plants. Edited by S.M. Jain and S.C. Minocha. Kluwer Academic Publishers, Dordrecht. (In press).Google Scholar
  165. Wareing, P.F. 1951. Growth studies in woody species. III. Further photoperiodic effects in Pinus silvestris. Physiol. Plant. 4: 41–56.CrossRefGoogle Scholar
  166. Wareing, P.F. 1956. Photoperiodism in woody plants. Annu. Rev. Plant Physiol. 7: 191–214.CrossRefGoogle Scholar
  167. Weiser, C.J. 1970. Cold resistance and injury in woody plants. Science, 169: 1269–1278.PubMedCrossRefGoogle Scholar
  168. Weller, J.L., Murfet, I.C., and Reid, J.B. 1997. Pea mutants with reduced sensitivity to far-red light define an important role for phytochrome A in day-length detection. Plant Physiol. 114: 1225–1236.PubMedGoogle Scholar
  169. Welling, A., Kaikuranta, P., and Rinne, P. 1997. Photoperiodic induction of dormancy and freezing tolerance in Betula pubescens. Involvement of ABA and dehydrins. Physiol. Plant. 100: 119–125.CrossRefGoogle Scholar
  170. Wetzel, S., and Greenwood, J.S. 1989. Proteins as a potential nitrogen storage compound in bark and leaves of several softwoods. Trees, 3: 149–153.CrossRefGoogle Scholar
  171. Whitelam, G.C., and Devlin, P.F. 1997. Roles of different phytochromes in Arabidopsis photomorphogenesis. Plant Cell Environ. 20: 752–758.CrossRefGoogle Scholar
  172. Wisniewski, M., Webb, R., Balsamo, R., Close, T.J., Yu, X.-M., and Griffith, M. 1999. Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: a dehydrin form peach (Prunus persica). Physiol. Plant. 105: 600–608.CrossRefGoogle Scholar
  173. Wu, H., Echt, C.S., Popp, M.P., and Davis, J.M. 1997. Molecular cloning, structure and expression of an elicitor-inducible chitinase gene from pine trees. Plant Mol. Biol. 33: 979–987.Google Scholar
  174. Yazdani, R., Nilsson, J.-E. and Plomion, C. 1999. QTLs for frost resistance and growth rhythm in Pinus sylvestris L. In Abstracts of the Plant and Animal Genome VII Conference, 17–21 Jan., San Diego, CA.Google Scholar
  175. Young, E., and Hanover, J.W. 1977. Effects of quality, intensity, and duration of light breaks during a long night on dormancy in blue spruce (Picea pungens Engelm.) seedlings. Plant Physiol. 60: 271–273.PubMedCrossRefGoogle Scholar
  176. Zhong, Y., Mellerowicz, E.J., Lloyd, A.D., Leinhos, V., Riding, R.T., and Little, C.H.A. 1995. Seasonal variation in the nuclear genome size of ray cells in the vascular cambium of Fraxinus americana. Physiol. Plant. 93: 305–311.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • David Clapham
    • 1
  • Inger Ekberg
    • 1
  • C. H. Anthony Little
    • 2
  • Outi Savolainen
    • 3
  1. 1.Department of Forest GeneticsSwedish University of Agricultural SciencesUppsalaSweden
  2. 2.Natural Resources Canada, Canadian Forest ServiceMaritimes Forestry CentreFrederictonCanada
  3. 3.University of OuluOuluFinland

Personalised recommendations