Advertisement

Probabilistic Earthquake Location in 3D and Layered Models

Introduction of a Metropolis-Gibbs method and comparison with linear locations
  • Anthony Lomax
  • Jean Virieux
  • Philippe Volant
  • Catherine Berge-Thierry
Part of the Modern Approaches in Geophysics book series (MAGE, volume 18)

Abstract

Probabilistic earthquake location with non-linear, global search methods allows the use of 3D models and produces comprehensive uncertainty and resolution information represented by a probability density function over the unknown hypocentral parameters. We describe a probabilistic earthquake location methodology and introduce an efficient Metropolis-Gibbs, non-linear, global sampling algorithm to obtain such locations. Using synthetic travel times generated in a 3D model, we examine the locations and uncertainties given by an exhaustive grid-search and the Metropolis-Gibbs sampler using 3D and layered velocity models, and by a iterative, linear method in the layered model. We also investigate the relation of average station residuals to known static delays in the travel times, and the quality of the recovery of known focal mechanisms. With the 3D model and exact data, the location probability density functions obtained with the Metropolis-Gibbs method are nearly identical to those of the slower but exhaustive grid-search. The location PDFs can be large and irregular outside of a station network even for the case of exact data. With location in the 3D model and static shifts added to the data, there are systematic biases in the event locations. Locations using the layered model show that both linear and global methods give systematic biases in the event locations and that the error volumes do not include the “true” location — absolute event locations and errors are not recovered. The iterative, linear location method can fail for locations near sharp contrasts in velocity and outside of a network. Metropolis-Gibbs is a practical method to obtain complete, probabilistic locations for large numbers of events and for location in 3D models. It is only about 10 times slower than linearized methods but is stable for cases where linearized methods fail. The exhaustive grid-search method is about 1000 times slower than linearized methods but is useful for location of smaller number of events and to obtain accurate images of location probability density functions that may be highly-irregular.

Key words

3D models earthquake location non-linear optimization probability function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aki, K., and P.G. Richards (1980) Quantitative seismology, W.H. Freeman, San Francisco.Google Scholar
  2. Billings, S.D. (1994) Simulated annealing for earthquake location, Geophys. J. Int., 118, 680692.Google Scholar
  3. Calvert, A., F. Gomez, D. Seber, M. Barazangi, N. Jabour, A. Ibenbrahim, A. and Demnati (1997) An integrated geophysical investigation of recent seismicity in the Al-Hoceima region of North Morocco, Bull. Seism. Soc. Am. 87, 637–651.Google Scholar
  4. Dreger, D., R. Uhrhammer, M. Pasyanos, J. Frank, and B. Romanowicz (1998) Regional and far-regional earthquake locations and source parameters using sparse broadband networks: A test on the Ridgecrest sequence, Bull. Seism. Soc. Am. 88, 1353–1362.Google Scholar
  5. Geiger, L. (1912) Probability method for the determination of earthquake epicenters from the arrival time only (translated from German), Bull. St. Louis Univ. 8 (1), 56–71.Google Scholar
  6. Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA.Google Scholar
  7. Goldberg, D.E., and J. Richardson (1987) Genetic algorithms with sharing for multimodal function optimization, in J.J. Grefenstette (Ed.), Genetic Algorithms and their Applications, Proceedings of the Second International Conference on Genetic Algorithms and their applications, Lawrence Erlbaum Associates, Hillsdale, NJ, 41–49.Google Scholar
  8. Gresta, S., L. Peruzza, D. Slejko and G. Distefano (1998) Inferences on the main volcano-tectonic structures at Mt. Etna (Sicily) from a probabilistic seismological approach, J. Seis. 2, 105–116.CrossRefGoogle Scholar
  9. Hammersley, J.M., and D.C. Handscomb (1967) Monte Carlo Methods, Methuen, London.Google Scholar
  10. Holland, J.H. (1992) Adaptation in natural and artificial systems, Bradford Books/MIT Press, Cambridge, MA, 211 pp.Google Scholar
  11. Jones, R.H., and R.C. Stewart (1997) A method for determining significant structures in a cloud of earthquakes, J. Geophys. Res. 102, 8245–8254.CrossRefGoogle Scholar
  12. Keilis-Book, V.I., and T.B. Yanovskaya (1967) Inverse problems in seismology (structural review), Geophys. J. R. Astr. Soc. 13, 223–234.CrossRefGoogle Scholar
  13. Kennett, B.L.N. (1992) Locating oceanic earthquakes — the influence of regional models and location criteria, Geophys. J. Int. 108, 848–854.CrossRefGoogle Scholar
  14. Kirkpatrick, S., C.D. Gelatt, and M.P. Vecchi (1983) Optimization by simulated annealing, Science 220, 671–680.CrossRefGoogle Scholar
  15. Lahr, J.C. (1989) HYPOELLIPSENersion 2.0: A computer program for determining local earthquake hypocentral parameters, magnitude and first motion pattern, U.S. Geol. Surv. Open-File Rep. 89–116, 92 p.Google Scholar
  16. Lepage, G.P. (1978) A new algorithm for adaptive multidimensional integration, J. Comp. Phys. 27, 192–203.CrossRefGoogle Scholar
  17. Le Meur, H. (1994) Tomographie tridimensionelle a partor des temps des premieres arrivées des ondes P et S, application a la région de Patras (Grece), These de Doctorate, Université Paris VII, France.Google Scholar
  18. Le Meur, H., J. Virieux, and P. Podvin (1997) Seismic tomogrphy of the Gulf of Corinth: a comparison of methods, Ann. Geofis. 40, 1–24.Google Scholar
  19. Lomax, A., and R. Snieder (1995) Identifying sets of acceptable solutions to non-linear, geophysical inverse problems which have complicated misfit functions, Nonlinear Processes in Geophys. 2, 222–227.CrossRefGoogle Scholar
  20. Mohammadioun G., and P. Dervin (1995) A full scale laboratory for seismic studies in Southeastern France: The Middle Durance Fault, in Proc. 5th International Conference on Seismic Zonation, Ouest Editions, 2, 1635–1642Google Scholar
  21. Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller (1953) Equation of state calculations by fast computing machines, J. Chem. Phys. 1, 1087–1092.CrossRefGoogle Scholar
  22. Mosegaard, K., and A. Tarantola (1995) Monte Carlo sampling of solutions to inverse problems, J. Geophys. Res. 100, 12431–12447.CrossRefGoogle Scholar
  23. Moser, T.J., T. van Eck, and G. Nolet (1992) Hypocenter determination in strongly heterogeneous earth models using the shortest path method, J. Geophys. Res. 97, 6563–6572.CrossRefGoogle Scholar
  24. Nelson, G.D., and J.E. Vidale (1990) Earthquake locations by 3-D finite-difference travel times, Bull. Seism. Soc. Am. 80, 395–410.Google Scholar
  25. Nolte, B., and L.N. Frazer (1994) Vertical seismic profile inversion with genetic algorithms, Geophys. J Int. 117, 162–178.CrossRefGoogle Scholar
  26. Pavlis, G.L. (1986) Appraising earthquake hypocenter location errors: a complete practical approach for single event locations, Bull. Seism. Soc. Am. 76, 1699–1717.Google Scholar
  27. Podvin, P. and I. Lecomte (1991) Finite difference computations of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools, Geophys. J. Int. 105, 271–284.CrossRefGoogle Scholar
  28. Press, F. (1968) Earth models obtained by Monte Carlo inversions, J. Geophys. Res. 73, 5223–5234.CrossRefGoogle Scholar
  29. Press, W.H., S.A. Teukolosky, W.T. Vetterling, and B.P. Flannery (1993) Numerical recipies in C: the art of scientific computing, Cambridge Univ. Press, Cambridge, 994 pp.Google Scholar
  30. Reasenberg, P. and D. Oppenheimer (1985) FPFIT, FPPLOT and FPPAGE: FORTRAN computer programs for calculating and plotting earthquake fault-plane solutions, U.S. Geol. Surv. Open-File Rep. 85–739, 109 p.Google Scholar
  31. Rothman, D.H. (1985) Nonlinear inversion, statistical mechanics, and residual statics estimation, Geophysics 50, 2784–2796.CrossRefGoogle Scholar
  32. Sambridge, M. and G. Drijkoningen (1992) Genetic algorithms in seismic waveform inversion, Geophys. J Int. 109, 323–342.CrossRefGoogle Scholar
  33. Sambridge, M. and K. Gallagher (1993) Earthquake hypocenter location using genetic algorithms, Bull. Seism. Soc. Am. 83 1467–1491.Google Scholar
  34. Sambridge, M.S., and B.L.N. Kennett (1986) A novel method of hypocenter location, Geophys. J R. Astron. Soc. 87, 313–331.CrossRefGoogle Scholar
  35. Scales, J. A., M. L. Smith, and T.L. Fischer (1992) Global optimization methods for multimodal inverse problems, J Comp. Phys. 103, 258–268.CrossRefGoogle Scholar
  36. Schwartz, S.Y., and G.D. Nelson (1991) Loma Prieta aftershock relocation with S-P traveltimes: effects of 3D structure and true error estimates, Bull. Seism. Soc. Am. 81, 1705–1725.Google Scholar
  37. Shearer, P.M. (1997) Improving local earthquake locations using the Ll norm and waveform cross correlation: Application to the Whittier Narrows, California, aftershock sequence., J. Geophys. Res. 102, 8269–8283.CrossRefGoogle Scholar
  38. Sen, M.K., and P.L. Stoffa (1995) Global optimization methods in geophysical inversion, Elsevier, Amsterdam, 281 p.Google Scholar
  39. Stoffa, P.L., and M.K. Sen (1991) Nonlinear multiparameter optimization using genetic algorithms: Inversion of plane-wave seismograms, Geophysics 56, 1794–1810.CrossRefGoogle Scholar
  40. Tarantola, A. (1987) Inverse problem theory: Methods for data fitting and model parameter estimation, Elsevier, Amsterdam, 613 p.Google Scholar
  41. Tarantola, A. and B. Valette (1982) Inverse problems = quest for information, J Geophys., 50, 159–170.Google Scholar
  42. Vidale, J.E. (1988) Finite-difference calculation of travel times, Bull. Seism. Soc. Am., 78, 2062–2078.Google Scholar
  43. Vilardo, G., G. De Natale, G. Milano, and U. Coppa (1996) The seismicity of Mt. Vesuvius, Tectonophys., 261, 127–138.CrossRefGoogle Scholar
  44. Volant P., C. Berge, P. Dervin, M. Cushing., G. Mohammadiou and F. Mathieu (2000) The Southeastern Durance fault permanent network: preliminary results, J. Seism.,in press.Google Scholar
  45. Wiggins, R. A. (1969) Monte Carlo inversion of body wave observations, J Geophys. Res. 74, 3171–3181.CrossRefGoogle Scholar
  46. Wittlinger, G., G. Herquel, and T. Nakache (1993) Earthquake location in strongly heterogeneous media, Geophys. J Int. 115, 759–777.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Anthony Lomax
    • 1
  • Jean Virieux
    • 1
  • Philippe Volant
    • 2
  • Catherine Berge-Thierry
    • 2
  1. 1.Géosciences-AzurUniversity of Nice - Sophia AntipolisValbonneFrance
  2. 2.Institut de Protection et de Sûreté NucléaireFontenay-aux-Roses, ParisFrance

Personalised recommendations