The Varieties of Information and Scientific Explanation

  • Jaakko Hintikka
Part of the Jaakko Hintikka Selected Papers book series (HISP, volume 5)


The concept of information seems to be strangely neglected by epistemologists and philosophers of language. In many everyday situations, knowledge and information are nearly exchangeable terms; yet for every score of books with the phrase “theory of knowledge” in their titles there scarcely exists a single paper by a logician or philosopher dealing with the theory of information.1 Again, the information that a sentence yields or can yield might very well seem to an ordinary man much more important than the so-called meanings of the terms it contains, or even the meaning of the sentence itself. Yet, with but few exceptions, philosophers of language have not devoted more than a vanishingly small part of their efforts to the theory of information as compared with the theory of meaning. Why this should be so, I do not know. Perhaps the fact that mathematicians and communication theorists largely succeeded in appropriating the term “information” for their special purposes a couple of decades ago has something to do with this.2 I also suspect that it is much harder to talk persuasive nonsense about the quantitative concept of information than of the qualitative notions of knowledge and meaning. Be this as it may, the neglect is a regrettable one. In this paper, I shall try to call philosophers’ attention to a few possibilities of correcting it. I have already tried to do so in some earlier papers 3; the present one is partly a sequel to them and partly a new enterprise.


Subject Matter Semantic Information Scientific Discovery Scientific Explanation Inductive Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, E.W., On the nature and purpose of measurement, Synthese 16 (1966) 125–169.CrossRefGoogle Scholar
  2. Bar-Hillel, Y., Language and information, selected essays on their theory and application (Addison-Wesley Publ. Co., Inc., Reading, Mass., 1964).Google Scholar
  3. Bar-Hillel, Y. and R. Carnap, Semantic information, Brit. J. Phil. Sci. 4 (1953) 144–157.Google Scholar
  4. Carnap, R., Continuum of inductive methods (Chicago, University of Chicago Press, 1952).Google Scholar
  5. Carnap, R. and Y. Bar-Hillel, An outline of a theory of semantic information, Techn. Report no. 247 (Research Laboratory of Electronics, Massachusetts Institute of Technology, 1952); reprinted in: Bar-Hillel [1964].Google Scholar
  6. Cherry, C., On human communication (The M.I.T. Press, Cambridge, Mass., 1957; second edition, 1966).Google Scholar
  7. Cox, R.T., The algebra of probable inference (The John Hopkins Press, Baltimore, 1961).Google Scholar
  8. Cramér, H., Mathematical methods of statistics (Princeton, Princeton University Press, 1946).Google Scholar
  9. Dray, W., Laws and explanation in history (Oxford, Clarendon Press, 1956).Google Scholar
  10. Dubins, L. E. and L. J. Savage, How to gamble if you must: inequalities for stochastic processes (New York, McGraw-Hill, 1965).Google Scholar
  11. Fisher, Sir R.A., Statistical methods for research workers (Edinburgh, Oliver and Boyd, 1925).Google Scholar
  12. Fisher, Sir R.A., Statistical methods and scientific inference (Edinburgh, Oliver and Boyd, 1956).Google Scholar
  13. Good, I. J., Weight of evidence, corroboration, explanatory power, information and the utility of experiments, J. Roy. Stat. Soc. B 22 (1960) 319–331.Google Scholar
  14. Hanna, J., A new approach to the formulating and testing of learning models, Synthese 16 (1966) 344–380.CrossRefGoogle Scholar
  15. Hempel, C. G., Deductive-nomological versus statistical explanation, in: Scientific explanation, space and time, Minnesota studies in the philosophy of science, Vol. 3, eds. H. Feigl and G. Maxwell (Minneapolis, University of Minnesota Press, 1962) pp. 98–169.Google Scholar
  16. Hempel, C.G., Inductive inconsistencies, Synthese 12 (1960) 439–469; reprinted in: C. G. Hempel, Aspects of scientific explanation and other essays in the philosophy of science (New York, The Free Press, 1965) pp. 53–79.CrossRefGoogle Scholar
  17. Hintikka, J., Towards a theory of inductive generalization, in: Logic, methodology and philosophy of science, ed. Y. Bar-Hillel (Amsterdam, North-Holland Publ. Co., 1965) pp. 274–288.Google Scholar
  18. Hintikka, J., A two-dimensional continuum of inductive logic, in: Aspects of inductive logic, eds. J. Hintikka and P. Suppes (Amsterdam, North-Holland Publ. Co., 1966) pp. 113–132.CrossRefGoogle Scholar
  19. Hintikka, J., On semantic information, to appear in: Proc. Intern. Colloq. on logic, physical reality and history at the University of Denver, ed. W. Yourgrau (The Plenum Press, New York, 1968).Google Scholar
  20. Hintikka, J. and J. Pietarinen, Semantic information and inductive logic, in: Aspects of inductive logic, eds. J. Hintikka and P. Suppes (Amsterdam, North-Holland Publ. Co., 1966) pp. 96–112.CrossRefGoogle Scholar
  21. Kemeny, J.G., A logical measure function, J. Symb. Logic 18 (1953) 289–308.CrossRefGoogle Scholar
  22. Kemeny, J. G. and P. Oppenheim, Degree of factual support, Phil. of Sci. 19 (1952) 307–324.CrossRefGoogle Scholar
  23. Khinchin, A.I., Mathematical foundations of information theory (Dover Publications, N.Y., 1957).Google Scholar
  24. Kyburg, H.E., Recent work in inductive logic, Am. Phil. Quart. 1 (1964) 249–287.Google Scholar
  25. Passmore, J., A hundred years of philosophy (London, second edition, 1966).Google Scholar
  26. Popper, K. R., Logik der Forschung (Springer-Verlag, Wien, 1935); transl. with new notes and appendices as: The logic of scientific discovery (Hutchinson and Co., London, 1959).Google Scholar
  27. Popper, K.R., Degree of confirmation, Brit. J. Phil. Sci. 5 (1954) 143–149. (Correction ibid. 334.)CrossRefGoogle Scholar
  28. Reichenbach, H., The theory of probability (Berkeley and Los Angeles, University of California Press, 1949).Google Scholar
  29. Savage, L.J., The foundations of statistics (New York, John Wiley and Sons, 1954).Google Scholar
  30. Shannon, C. E. and W. Weaver, The mathematical theory of communication (The University of Illinois Press, Urbana, Illinois, 1949).Google Scholar
  31. Törnebohm, H., Information and confirmation, Gothenburg studies in philosophy, Vol. 3 (Stockholm, Almquist and Wiksell, 1964).Google Scholar
  32. Törnebohm, H., Two measures of evidential strength, in: Aspects of inductive logic, eds. J. Hintikka and P. Suppes (Amsterdam, North-Holland Publ. Co., 1966) pp. 81–95.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Jaakko Hintikka
    • 1
  1. 1.Boston UniversityUSA

Personalised recommendations