A Study of Chaos in the Asteroid Belt

  • M. Šidlichovský
  • D. Nesvorný
Part of the NATO ASI Series book series (ASIC, volume 522)


Laskar’s results [1] on the chaotic motion of the inner planets, the existence of chaotic regions inside orbital resonances of asteroids, the movement of the rotational axis of Mars [2] and ultimately Earth’s unstable obliquity [3] brought the interest of astronomers back to the problem of chaos in the solar system. The possibilities of studies of chaos were recently widened from the original Poincaré mapping and Lyapunov characteristic coefficient (LCE) to Laskar frequency analysis [1] and [4], sup-map analysis [5], fast Lyapunov indicators [6] and local Lyapunov numbers distribution [7], [8] and [9].


Solar System Chaotic Motion Chaotic Region Asteroid Belt Outer Planet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Laskar, J. (1990) The Chaotic Motion in the Solar System. A Numerical Estimate of the Size of the Chaotic Zones, Icarus 88, pp. 266–291ADSCrossRefGoogle Scholar
  2. 2.
    Laskar, J. and Robutel, P. (1993) The Chaotic Obliquity of the Planets, Nature 361, pp. 608–612ADSCrossRefGoogle Scholar
  3. 3.
    Néron de Surgy, O. and Laskar, J. (1997) On the Long Term Evolution of the Spin of the Earth, Astron. Astrophys 318, pp. 975–989ADSGoogle Scholar
  4. 4.
    Laskar, J., Froeschlé, Cl. and Celetti, A. (1992) The Measure of Chaos by Numerical Analysis of the Fundamental Frequencies. Application to Standard Mapping, Physica D 56, pp. 253–269MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 5.
    Froeschlé, Cl. and Lega, E. (1997) On the Measure of the Structure around the Last KAM Torus before and after its Break-up, Celest. Mech. Dynam. Astron. 64, pp. 21–31ADSCrossRefGoogle Scholar
  6. 6.
    Lega, E. and Froeschlé Cl. (1997) Fast Lyapunov Indicators Comparison with Other Chaos Indicators Application to Two and Four Dimensional Maps, The Dynamical Behaviour of our Planetary System, Proceedings of the Fourth Alexander von Humboldt Colloquium on Celestial Mechanics, editors: R. Dvorak, J. Henrard, Kluwer Academic Publishers, Dordrecht, pp. 257–275CrossRefGoogle Scholar
  7. 7.
    Froeschlé, Cl., Froeschlé, Ch. and Lohinger, E. (1993) Celest. Mech. Dynam. Astron. 56, pp. 307–314ADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Voglis, N. and Contopoulos, G. (1994) Invariant Spectra of Orbits in Dynamical Systems, J. Phys A: Math. Gen. 27, pp. 4899–4909MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Contopoulos, G. and Voglis, N. (1966) Spectra of Stretching Numbers and Helicity Angles in Dynamical Systems, it Celest. Mech. Dynam. Astron. 64, pp. 1–20MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    Sidlichovský, M., Nesvorný, D. (1994) Temporary Capture of Grains in Exterior Resonances with the Earth,Astron. Astrophys. 289, pp. 972–982ADSGoogle Scholar
  11. 11.
    Quinlan, G.D. and Tremaine, S. (1990) Symmetric Multistep Methods for the Numerical Integration of Planetary Orbits, A.J. 100, pp. 1694–1700ADSCrossRefGoogle Scholar
  12. 12.
    Sidlichovský, M. and Nesvorný, D. (1997) Frequency Modified Fourier Transform and its Application to Asteroids, The Dynamical Behaviour of our Planetary System, Proceedings of the Fourth Alexander von Humboldt Colloquium on Celestial Mechanics, editors: R. Dvorak, J. Henrard, Kluwer Academic Publishers, Dordrecht, pp. 137–148CrossRefGoogle Scholar
  13. 13.
    Carpino, M., Milani, A., Nobili A. M. (1987) Long-term Numerical Integrations and Synthetic Theories for the Motion of Outer Planets, Astron. Astrophys. 181, pp. 182–194ADSzbMATHGoogle Scholar
  14. 14.
    Morbidelli, A. and Froeschlé, Cl. (1996) On the Relationship between Lyapunov Times and Macroscopic Instability Times, Celest. Mech. Dynam. Astron. 63, pp. 227–239ADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Milani, A., Nobili, A.M. and Kneževié, Z. (1997) Stable Chaos in Asteroid Belt, Icarus, 125, pp.13–31ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • M. Šidlichovský
    • 1
  • D. Nesvorný
    • 2
  1. 1.Astronomical Institute of the Academy of Sciences of the Czech RepublicPraha 4Czech Republic
  2. 2.Instituto Astrônomico e GeofísicoUniversidade de São PauloSão PauloBrazil

Personalised recommendations