Sonochemistry and Sonoluminescence pp 191-204

Part of the NATO ASI Series book series (ASIC, volume 524)

Hot Spot Conditions during Multi-Bubble Cavitation

  • K. S. Suslick
  • W. B. McNamaraIII
  • Y. Didenko

Abstract

Together with the chemical effects of ultrasound, light is often emitted [1–5]. Such sonoluminescence provides an extremely useful spectroscopic probe of the conditions created during cavitation bubble collapse. Acoustic cavitation is the origin of both sonochemistry and sonoluminescence. The collapse of bubbles caused by cavitation produces intense local heating and high pressures, with very short lifetimes. As we will demonstrate in this chapter, in clouds of cavitating bubbles, these hot spots have equivalent temperatures of roughly 5000 K, pressures of about 1000 atmospheres, and heating and cooling rates above 1010 K/s. In single bubble cavitation, conditions may be even more extreme [6–7]. Thus, cavitation can create extraordinary physical and chemical conditions in otherwise cold liquids.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Suslick, K.S., ed. (1988) Ultrasound: Its Chemical, Physical, and Biological Effects, VCH Publishers, New York.Google Scholar
  2. 2.
    Suslick, K.S. (1990) Science, 247, 1439.ADSCrossRefGoogle Scholar
  3. 3.
    Mason, T.J., Lorimer, J.P. (1988) Sonochemistry: Theory, Applications and Uses of Ultrasound in Chemistry, Ellis Horword, Ltd., Chichester, U.K.Google Scholar
  4. 4.
    Leighton, T.G. (1994) The Acoustic Bubble Academic Press, London, pp. 531–551.Google Scholar
  5. 5.
    Suslick, K.S.; Crum, L.A. (1997) “Sonochemistry and Sonoluminescence,” in Encyclopedia of Acoustics; Crocker, M. J., ed.; Wiley-Interscience, New York, vol. 1, ch. 26, pp. 271–282.Google Scholar
  6. 6.
    Crum, L.A. (1994) Physics Today, 47, 22.CrossRefGoogle Scholar
  7. 7.
    Putterman, S.J. (1995) Scientific American, Feb. 1995, 46.Google Scholar
  8. 8.
    Lord Rayleigh (1917) Philos. Mag., 34, 94.CrossRefMATHGoogle Scholar
  9. 9.
    Richards, W.T. Loomis, A.L. (1927) J. Am. Chem. Soc., 49, 3086.Google Scholar
  10. 10.
    Flynn, H.G. (1964) “Physics of Acoustic Cavitation in Liquids,” in Physical Acoustics, ed. by W.P. Mason, Academic Press, New York, Vol 113, p. 157.Google Scholar
  11. 11.
    Margulis, M.A. (1992) Ultrasonics 30, 152.CrossRefGoogle Scholar
  12. 12.
    Lepoint, T., Mullie, F. (1994) Ultrasonics Sonochem., 1, S13.CrossRefGoogle Scholar
  13. 13.
    Suslick, K.S.; Kemper, K.A. (1993) Ultrasonics 31, 463–465.CrossRefGoogle Scholar
  14. 14.
    Suslick, K.S.; Dokytcz, S.J.; Flint, E.B. Ultrasonics 1990, 28, 280–290.CrossRefGoogle Scholar
  15. 15.
    L.A. Crum, J. Acoust. Soc. Am. 95, 559 (1994).Google Scholar
  16. 16.
    B.P. Barber and S.J. Putterman, Phys. Rev. Leu. 69, 3839 (1992).ADSCrossRefGoogle Scholar
  17. 17.
    Putterman, S. J.; Weninger, K.; Barber, B.P. Phys. Rev. Lett. 1997, 78, 1799–180.ADSCrossRefGoogle Scholar
  18. 18.
    Suslick, K.S.; Hammerton, D.A.; Cline, Jr., R.E. (1986) J. Am. Chem. Soc. 108, 5641.Google Scholar
  19. 19.
    Henglein, A. (1993) Adv. Sonochem., 3, 17.Google Scholar
  20. 20.
    Frenzel, H. Schultes, H. (1934) Z. Phys. Chem. 27b, 421.Google Scholar
  21. 21.
    Matula, T.J.; Roy, R.A.; Mourad, P.D.; McNamara III W.B.; and Suslick, K.S. (1995) Phys. Rev. Lett. 75, 2602.Google Scholar
  22. 22.
    Cheeke, J.D.N. (1997) Can. J. Phys. 75, 77–98.ADSGoogle Scholar
  23. 23.
    Barber, B. P.; Hiller, R.A.; Loefstedt, R.; Putterman, S.J.; Weninger, K.R. (1997) Phys. Rep. 281, 65143.CrossRefGoogle Scholar
  24. 24.
    Didenko, Y.T.; Pugach, S.P. (1994) Ultrasonics Sonochemistry 1, s10 – s12.CrossRefGoogle Scholar
  25. 25.
    Didenko, Y.T.; Nastich, D.N.; Pugach, S.P.; Polovinka, Y.A.; Kvochka, V.I. (1994) Ultrasonics 32, 7176CrossRefGoogle Scholar
  26. 26.
    Flint, E.B.; Suslick, K.S. (1991) J. Phys. Chem. 95, 1484.Google Scholar
  27. 27.
    Flint, E.B.; Suslick, K.S. (1989) J. Amer. Chem. Soc. 111, 6987.Google Scholar
  28. 28.
    Suslick, K.S.; Flint, E.B.; Grinstaff, M.W.; Kemper, K.A. (1993) J. Phys. Chem., 97, 3098–3099.Google Scholar
  29. 29.
    Flint, E.B.; Suslick, K.S. (1991) Science 253, 1397.ADSCrossRefGoogle Scholar
  30. 30.
    Jeffries, J.B.; Copeland, R.A.; Flint, E.B.; Suslick, K.S. (1992) Science 256, 248.ADSCrossRefGoogle Scholar
  31. 31.
    Lohse, D.; Brenner, M.P.; Dupont, T.F.; Hilgenfeldt, S.; and Johnston, B. (1997) Phys. Rev. Lett., 78, 1359–1362.Google Scholar
  32. 32.
    Barber, P.; Hiller, R.; Arisaka, K.; Fetterman, H. and Putterman, S.J. (1992) J. Acoust. Soc. Am. 91, 3061.Google Scholar
  33. 33.
    Gompf, B., Günther, R.; Nick, G.; Pecha, R.; Eisenmenger, W. (1997) Phys. Rev. Lett. 79, 1405.Google Scholar
  34. 34.
    Moss, W.C.; Clarke, D.B.; Young, D.A. (1997) Science 276, 1398–1401.CrossRefGoogle Scholar
  35. 35.
    Bernstein, L.S.; Zakin, M.S.; Flint, E.B.; Suslick, K.S. (1996) J. Phys. Chem. 100, 6612–6619Google Scholar
  36. 36.
    Barber, P.; Hiller, R.A; Lofstedt, R.; Putterman, S.J.; Weninger, K.R. (1994) Phys. Rev. Lett., 72, 1380.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • K. S. Suslick
    • 1
  • W. B. McNamaraIII
    • 1
  • Y. Didenko
    • 1
  1. 1.Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations