Diversity in Phaseolus Species in Relation to the Common Bean

  • Daniel G. Debouck

Abstract

The genus was originally defined by Linnaeus (see Delgado Salinas, 1985; Westphal, 1974). The poor initial definition of the genus, together with the biological wealth of tropical forms in this group of legumes, resulted in the naming of hundreds of species (over 400), especially in the period 1810–1910. Early reviews by Bentham (1840), Hassler (1923), and Piper (1926), however, contributed to the clarification of natural groups at a higher level, and lead to the definition of several sections. Consolidation of these sections, mostly after 1950, thanks to the contributions of Urban (1928), Verdcourt (1970), Maréchal et al. (1978), and Lewis & Delgado Salinas (1994), resulted in several new genera, including Vigna, Phaseolus sensu stricto, Macroptilium, Ramirezella, and recently Misanthus. At the International Legume Conference of 1978, a definition of the genus was narrowly defined for a natural group of American legumes within the Phaseolinae with the following main attributes: stipules not extending below insertion, presence of uncinate hairs, floral bracts persistent up to or past flowering, absence of extra floral nectaries, and style not extending beyond the stigma.

Key words

cultivated and wild Phaseolus species evolution under domestication founder effect gene pools grouping of species useful traits 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abawi, G. S., R. Provvidenti, D.C. Crosier & J.E. Hunter. 1978. Inheritance of resistance to white mold disease in Phaseolus coccineus. J. Hered. 69:200–202.Google Scholar
  2. Acosta Gallegos, J., C. Quintero, J. Vargas, O. Toro, J. Tohme & C. Cardona. 1998. A new variant of arcelin in wild common bean, Phaseolus vulgaris L., from southern Mexico. Genet. Resources & Crop Evol. 45:235–242.Google Scholar
  3. Adam-Blondon, A.F., M. Sévignac, H. Bannerot & M. Dron. 1994. SCAR, RAPD and RFLP markers linked to a dominant gene (Are) conferring resistance to anthracnose in common bean. Theor. Appl. Genet. 88:865–870.Google Scholar
  4. Alvarez, M.N., P.D. Ascher & D.W. Davis. 1981. Interspecific hybridization in Euphaseolus through embryo rescue. HortScience 16:541–543.Google Scholar
  5. Al-Yasiri, S.A. & D.P. Coyne. 1964. Effect of growth regulators in delaying pod abscission and embryo abortion in the interspecific cross Phaseolus vulgaris × P. acutifolius. Crop Sci. 4:433–435.Google Scholar
  6. Al-Yasiri, S.A. & D.P. Coyne. 1966. Interspecific hybridization in the genus Phaseolus. Crop Sci. 6:59–60.Google Scholar
  7. Andrade-Aguilar, J.A. & M.T. Jackson. 1988. Attempts at interspecific hybridization between Phaseolus vulgaris L. and P. acutifolius A.Gray using embryo rescue. Plant Breed. 101:173–180.Google Scholar
  8. Baggett, J.R. 1956. The inheritance of resistance to strains of bean yellow mosaic virus in the interspecific cross Phaseolus vulgaris × P. coccineus. Plant Dis. Rptr. 40:702–707.Google Scholar
  9. Bannerot, H. 1979. Cold tolerance in beans. Annu. Rpt. Bean Improv. Coop. 22:81–84.Google Scholar
  10. Barbosa Fevereiro, V.P. 1986–87. Macroptilium (Bentham) Urban do Brasil (Leguminosae — Faboideae — Phaseoleae — Phaseolinae). Arq. Jard. Bot. Rio de Janeiro 28:109–180.Google Scholar
  11. Bassett, M.J. 1996. List of genes — Phaseolus vulgaris L. Annu. Rpt. Bean Improv. Coop. 39:1–19.Google Scholar
  12. Basurto Peña, F.A., D. Martinez Moreno, M.A. Martinez Alfaro & A. Castellanos Villegas. 1996. Frijol gordo abreviador, una forma precoz de Phaseolus coccineus L. spp. darwinianus Hernández X. & Miranda C, en Nauzontla, Pue. Geografia Agrícola (México) 22–23:95–102.Google Scholar
  13. Baudoin, J.P., J.P. Barthélémy & V. Ndungo. 1991. Variability of cyanide contents in the primary and secondary genepools of the lima bean, Phaseolus lunatus L. FAO/IBPGR Plant Genet. Resources Newsl. 85:5–9.Google Scholar
  14. Baudoin, J.P., R. Maréchal, E. Otoul & F. Camarena. 1985. Interspecific hybridizations within the Phaseolus vulgaris — Phaseolus coccineus L. complex. Annu. Rpt. Bean Improv. Coop. 28:64–65.Google Scholar
  15. Becerra Velásquez, V.L. & P. Gepts. 1994. RFLP diversity of common bean (Phaseolus vulgaris) in its centres of origin. Genome 37:256–263.Google Scholar
  16. Beebe, S., O. Toro Ch., A.V. González, M.I. Chacón & D.G. Debouck. 1997. Wild-weed-crop complexes of common bean (Phaseolus vulgaris L., Fabaceae) in the Andes of Peru and Colombia, and their implications for conservation and breeding. Genet. Resources & Crop Evol. 44:73–91.Google Scholar
  17. Belivanis, T. & C. Doré. 1986. Interspecific hybridization of Phaseolus vulgaris L. and P. angustissimus A. Gray using in vitro embryo culture. Plant Cell Rep. 5:329–331.Google Scholar
  18. Bentham, G. 1840. De leguminosarum generibus commentationes. Annin. Wien. Mus. Naturg. 2:61–142.Google Scholar
  19. Blanc, M. 1984. Gregor Mendel: la légende du génie méconnu. La Recherche 151:46–59.Google Scholar
  20. Braak, J.P. & E. Kooistra. 1975. A successful cross between Phaseolus vulgaris L. and P. ritensis Jones with the aid of embryo culture. Euphytica 24:669–679.Google Scholar
  21. Brown, R., N. Anderson & P. Ascher. 1996. Congruity backcross (CBC) hybrids used to create three-species hybrids with Phaseolus acutifolius cytoplasm. Annu. Rpt. Bean Improv. Coop. 39:98–99.Google Scholar
  22. Buhrow, R. 1981. Stress tolerance of Southwestern Phaseolinae. Annu. Rpt. Bean Improv. Coop. 24:94–95.Google Scholar
  23. Buhrow, R.A. 1980. Frost tolerance of the Phaseolinae of the Southwestern United States. Annu. Rpt. Bean Improv. Coop. 23:62–64.Google Scholar
  24. Cabral, J.B. & O.J. Crocomo. 1989. Interspecific hybridization of Phaseolus vulgaris, P. acutifolius and P. lunatus using in vitro technique. Turrialba 39:243–246.Google Scholar
  25. Caicedo, A.L., E. Gaitán, M.C. Duque, O. Toro Chica, D.G. Debouck & J. Tohme. 1999. AFLPs fingerprinting of Lima bean (Phaseolus lunatus L.) and related wild species of South America. Crop Sci. 39:(in press).Google Scholar
  26. Camarena, F. & J.P. Baudoin. 1987. Obtention des premiers hybrides interspécifiques entre Phaseolus vulgaris et Phaseolus polyanthus avec le cytoplasme de cette dernière forme. Bull. Rech. Agron. Gembloux 22:43–55.Google Scholar
  27. Cardona, C. & J. Kornegay. 1989. Use of wild Phaseolus vulgaris to improve beans for resistance to bruchids. pp. 90–98. In S. Beebe (ed), Current Topics in Breeding of Common beans. CIAT, Cali, Colombia.Google Scholar
  28. Cheng, S.S., M.J. Bassett & K.H. Quesenberry. 1981. Cytogenetic analysis of interspecific hybrids between common bean and scarlet runner bean. Crop Sci. 21:75–79.Google Scholar
  29. Coyne, D.P., M.L. Schuster & S. Al-Yasiri. 1963. Reaction studies of bean species and varieties to common blight and bacterial wilt. Plant Dis. Rptr. 47:534–537.Google Scholar
  30. Debouck, D.G. 1989. Early beans (Phaseolus vulgaris L. and P. lunatus L.) domesticated for their aesthetic value? Annu. Rpt. Bean Improv. Coop. 32:62–63.Google Scholar
  31. Debouck, D.G. 1990. Wild beans as a food resource in the Andes. Annu. Rpt. Bean Improv. Coop. 33:102–103.Google Scholar
  32. Debouck, D.G. 1991. Systematics and morphology, pp. 55–118. In A. van Schoonhoven & O. Voysest (eds.), Common Beans: Research for Crop Improvement. C.A.B. Int., Wallingford, U.K. & CIAT, Cali, Colombia.Google Scholar
  33. Debouck, D.G. 1992. Frijoles, Phaseolus spp. pp. 45–60. In E. Hernández Bermejo & J. León (eds.), Cultivos Marginados: Otra Perspectiva de 1492. FAO, Rome, Italy.Google Scholar
  34. Debouck, D.G. 1996. Colombian common and Lima beans: views on their origin and evolutionary significance. Revista CORPOICA 1:7–15.Google Scholar
  35. Debouck, D.G., R. Araya Villalobos, R.A. Ocampo Sánchez & W.G. González Ugalde. 1989a. Collecting Phaseolus in Costa Rica. FAO/IBPGR Plant Genet. Resources Newsl. 78/79:44–46.Google Scholar
  36. Debouck, D.G., R. Castillo & J. Tohme. 1989b. Observations on little-known Phaseolus germplasm of Ecuador. FAO/IBPGR Plant Genet. Resources Newsl. 80:15–21.Google Scholar
  37. Debouck, D.G. & J. Smartt. 1995. Beans, Phaseolus spp. (Leguminosae-Papilionoideae). pp. 287–294. In J. Smartt & N.W. Simmonds (eds.), Evolution of Crop Plants. 2nd ed. Longman, London, U.K.Google Scholar
  38. Debouck, D.G., O. Toro, O.M. Paredes, W.C. Johnson & P. Gepts. 1993. Genetic diversity and ecological distribution of Phaseolus vulgaris (Fabaceae) in northwestern South America. Econ. Bot. 47:408–423.Google Scholar
  39. Delgado Salinas, A. 1985. Systematics of the genus Phaseolus (Leguminosae) in North and Central America. Ph.D. dissertation. Univ. of Texas, Austin, U.S.A.Google Scholar
  40. Delgado Salinas, A., A. Bruneau & J.J. Doyle. 1993. Chloroplast DNA phylogenetic studies in New World Phaseolinae (Leguminosae: Papilionoideae: Phaseoleae). Syst. Bot. 18:6–17.Google Scholar
  41. Delgado Salinas, A., T. Turley & M. Lavin. 1998. Cultivated and wild species of Phaseolus in phylogenetic context. Amer. J. Bot. (supplem) 85:123. (abstract).Google Scholar
  42. Dhaliwal, A.S., L.H. Pollard & A.P. Lorz. 1962. Cytological behavior of an F1 species cross (Phaseolus lunatus L. var Fordhook × Phaseoluspolystachyus L.). Cytologia 27:369–374.Google Scholar
  43. Evans, A.M. 1980. Structure, variation, evolution, and classification in Phaseolus. pp. 337–347. In R.J. Summerfield & A.H. Bunting (eds.), Advances in Legume Science. Royal Botanic Gardens, Kew, U.K.Google Scholar
  44. Federici, C.T. & J.G. Waines. 1988. Interspecific hybrid compatibility of selected Phaseolus vulgaris L. lines with P. acutifolius A. Gray, P. lunatus L., and P. filiformis Bentham. Annu. Rpt. Bean Improv. Coop. 31:201–202.Google Scholar
  45. Federici, C.T. & J.G. Waines. 1989. Interspecific hybridization of common beans with tepary beans. Annu. Rpt. Bean Improv. Coop. 32:70–71.Google Scholar
  46. Fermond, C. 1855. Recherches sur les fécondations réciproques de quelques végétaux. Bull. Soc. Bot. Fr. 2:748–754.Google Scholar
  47. Fofana, B., J.P. Baudoin, X. Vekemans, D.G. Debouck & P. du Jardin. 1999. Molecular evidence for an Andean origin and a secondary gene pool for the Lima bean (Phaseolus lunatus L.) using chloroplast DNA. Theor. Appl. Genet. 98:202–212.Google Scholar
  48. Freeman, G.F. 1918. Southwestern beans and teparies. Bulletin No. 68. Univ. Arizona Agric. Exp. Stn, Tucson, U.S.A.Google Scholar
  49. Freyre, R., P.W. Skroch, V. Geffroy, A.F. Adam-Blondon, A. Shirmohamadali, W.C. Johnson, V. Llaca, R.O. Nodari, P.A. Pereira, S.M. Tsai, J. Tohme, M. Dron, J. Nienhuis, C.E. Vallejos & P. Gepts. 1998. Towards an integrated linkage map of common bean. 4. Development of a core linkage map and alignment of RFLP maps. Theor. Appl. Genet. 97:847–856.Google Scholar
  50. Freytag, G.F. 1975. Research related to the origin and improvement of the common bean (Phaseolus vulgaris L.). pp. 159–163. In J. Bird & K. Maramorosch (eds), Tropical Diseases of Legumes. Academic Press, New York, U.S.A.Google Scholar
  51. Freytag, G.F. & D.G. Debouck. 1996. Phaseolus costaricensis, a new wild bean species (Phaseolinae, Leguminosae) from Costa Rica and Panama, Central America. NO VON 6:157–163.Google Scholar
  52. Garver, S. 1934. The Redfield tepary bean, an early maturing variety. J. Amer. Soc. Agron. 3:397–403.Google Scholar
  53. Garvin, D.F. & N.F. Weeden. 1994. Isozyme evidence supporting a single geographic origin for domesticated tepary bean. Crop Sci. 34:1390–1395.Google Scholar
  54. Gepts, P. 1988. A middle American and an Andean common bean gene pool. pp. 375–390. In P. Gepts (ed.), Genetic Resources of Phaseolus Beans. Kluwer, Dordrecht, Netherlands.Google Scholar
  55. Gepts, P. & D.G. Debouck. 1991. Origin, domestication, and evolution of the common bean (Phaseolus vulgaris L.). pp. 7–53. In A. van Schoonhoven & O. Voysest (eds.), Common Beans: Research for Crop Improvement. C.A.B. Int., Wallingford, U.K. & CIAT, Cali, Colombia.Google Scholar
  56. Gepts, P., T.C. Osborn, K. Rashka & F.A. Bliss. 1986. Phaseolin protein variability in wild forms and landraces of the common bean (Phaseolus vulgaris L.): evidence for multiple centers of domestication. Econ. Bot. 40:451–468.Google Scholar
  57. González, A., J. Lynch, J.M. Tohme, S.E. Beebe & R.E. Macchiaveli. 1995. Characters related to leaf photosynthesis in wild populations and landraces of common bean. Crop Sci. 35:1468–1476.Google Scholar
  58. Grant, V. 1975. Genetics of Flowering Plants. Columbia Univ. Press, New York, U.S.A.Google Scholar
  59. Guo, M., D.A. Lightfoot, M.C. Mok & D.W.S. Mok. 1991. Analyses of Phaseolus vulgaris L. and P. coccineus Lam. hybrids by RFLP: preferential transmission of P. vulgaris alleles. Theor. Appl. Genet. 81:703–709.Google Scholar
  60. Guo, M., M.C. Mok & D.W.S. Mok. 1994. RFLP analysis of preferential transmission in interspecific hybrids of Phaseolus vulgaris and P. coccineus. J. Hered. 85:174–178.PubMedGoogle Scholar
  61. Gutiérrez Salgado, A., P. Gepts & D.G. Debouck. 1995. Evidence for two gene pools of the Lima bean, Phaseolus lunatus L., in the Americas. Genet. Resources & Crop Evol. 42:15–28.Google Scholar
  62. Haghighi, K.R. & P.D. Ascher. 1988. Fertile, intermediate hybrids between Phaseolus vulgaris and P. acutifolius from congruity backcrossing. Sex. Plant Reprod. 1:51–58.Google Scholar
  63. Hamann, A., D. Zink & W. Nagl. 1995. Microsatellite fingerprinting in the genus Phaseolus. Genome 38:507–515.PubMedGoogle Scholar
  64. Hassler, E. 1923. Revisio specierum austro-americanarum generis Phaseoli L. Candollea 1:417–472.Google Scholar
  65. Heiser, C.H. 1988. Aspects of unconscious selection and the evolution of domesticated plants. Euphytica 37:77–81.Google Scholar
  66. Hendry, G.W. 1919. Climatic adaptations of the white tepary bean. J. Amer. Soc. Agron. 11:247–252.Google Scholar
  67. Hernández Xolocotzi, E., S. Miranda Colin & C. Prywer. 1959. El origen de Phaseolus coccineus L. darwinianus Hdz. X. & Miranda C, subspecies nova. Rev. Soc. Mex. Hist. Nat. 20:99–121.Google Scholar
  68. Hervieu, F., H. Bannerot & G. Pelletier. 1994. A unique cytoplasmic male sterility (CMS) determinant is present in three Phaseolus species characterized by different mitochondrial genomes. Theor. Appl. Genet. 88:314–320.Google Scholar
  69. Hervieu, F., L. Charbonnier, H. Bannerot & G. Pelletier. 1993. The cytoplasmic male-sterility (CMS) determinant of common bean is widespread in Phaseolus coccineus L. and Phaseolus vulgaris L. Curr. Genet. 24:149–155.PubMedGoogle Scholar
  70. Honma, S. 1956. A bean interspecific hybrid. J. Hered. 47:217–220.Google Scholar
  71. Honma, S. & O. Heeckt. 1959. Interspecific hybrid between Phaseolus vulgaris and P. lunatus. J. Hered. 50:233–237.Google Scholar
  72. Hubbeling, N. 1957. New aspects of breeding for disease resistance in beans (Phaseolus vulgaris L.). Euphytica 6:111–141.Google Scholar
  73. Hucl, P. & G.J. Scoles. 1985. Interspecific hybridization in the common bean: a review. HortScience 20:352–357.Google Scholar
  74. Hunter, J.E., M.H. Dickson, M.A. Boettger & J. A. Cigna. 1982. Evaluation of plant introductions of Phaseolus spp. for resistance to white mold. Plant Dis. 66:320–322.Google Scholar
  75. Ibrahim, A.M. & D.P. Coyne. 1975. Genetics of stigma shape, cotyledon position, and flower color in reciprocal crosses between Phaseolus vulgaris L. and Phaseolus coccineus (Lam.) and implications in breeding. J. Amer. Soc. Hort. Sci. 100:622–626.Google Scholar
  76. Jaaska, V. 1996. Isoenzyme diversity and phylogenetic affinities among the Phaseolus beans (Fabaceae). Pl. Syst. Evol. 200:233–252.Google Scholar
  77. Jacob, M., D. Zink & W. Nagl. 1995. RFLPs of the rRNA genes in the genus Phaseolus. Genet. Resources & Crop Evol. 42:97–106.Google Scholar
  78. Jung, G., D.P. Coyne & P. Read. 1992. Interspecific hybridization of Phaseolus vulgaris × Phaseolus acutifolius. Annu. Rpt. Bean Improv. Coop. 35:206.Google Scholar
  79. Kami, J., V. Becerra Velásquez, D.G. Debouck & P. Gepts. 1995. Identification of presumed ancestral DNA sequences of phaseolin in Phaseolus vulgaris. Proc. Natl. Acad. Sci. U.S.A. 92:1101–1104.PubMedGoogle Scholar
  80. Kaplan, L. 1965. Archeology and domestication in American Phaseolus (beans). Econ. Bot. 19:358–368.Google Scholar
  81. Kaplan, L. & L.N. Kaplan. 1988. Phaseolus in archaeology, pp. 125–142. In P. Gepts (ed), Genetic Resources of Phaseolus Beans. Kluwer, Dordrecht, Netherlands.Google Scholar
  82. Katanga, K. & J.P. Baudoin. 1987a. Obtention de nouveaux hybrides interspécifiques avec Phaseolus lunatus L. Bull. Rech. Agron. Gembloux 22:33–42.Google Scholar
  83. Katanga, K. & J.P. Baudoin. 1987b. Obtention et observations d’un nouvel hybride interspécifique entre deux espèces sauvages: Phaseolus filiformis Benth. × Phaseolus angustissimus A. Gray. Bull. Rech. Agron. Gembloux 22:153–160.Google Scholar
  84. Katanga, K. & J.P. Baudoin. 1990. Analyses méiotiques des hybrides F1 et étude des descendances F2 chez quatre combinaisons interspécifiques avec Phaseolus lunatus L. Bull. Rech. Agron. Gembloux 25:237–250.Google Scholar
  85. Kelly, J.D. & P.N. Miklas. 1998. The role of RAPD markers in breeding for disease resistance in common bean. Mol. Breed. 4:1–11.Google Scholar
  86. Khairallah, M.M., B.B. Sears & M.W. Adams. 1992. Mitochondrial restriction fragment length polymorphisms in wild Phaseolus vulgaris L.: insights on the domestication of the common bean. Theor. Appl. Genet. 84:915–922.Google Scholar
  87. Kimura, M. 1991. The neutral theory of molecular evolution: a review of recent evidence. Jap. J. Genet. 66:367–386.Google Scholar
  88. Kloz, J. & E. Klozová. 1974. The protein euphaseolin in Phaseolinae — a chemotaxonomical study. Biol. Plant. 16:290–299.Google Scholar
  89. Koenig, R. & P. Gepts. 1989. Allozyme diversity in wild Phaseolus vulgaris: further evidence for two major centers of genetic diversity. Theor. Appl. Genet. 78:809–817.Google Scholar
  90. Koenig, R.L., S.P. Singh & P. Gepts. 1990. Novel phaseolin types in wild and cultivated common bean (Phaseolus vulgaris, Fabaceae). Econ. Bot. 44:50–60.Google Scholar
  91. Koinange, E.M.K., S.P. Singh & P. Gepts. 1996. Genetic control of the domesticationsyndrome in common bean. Crop Sci. 36:1037–1045.Google Scholar
  92. Kuboyama, T., Y. Shintaku & G. Takeda. 1991. Hybrid plant of Phaseolus vulgaris L. and P. lunatus L. obtained by means of embryo rescue and confirmed by restriction endonuclease analysis of rDNA. Euphytica 54:177–182.Google Scholar
  93. Lackey, J. A. 1983. A review of generic concepts in American Phaseolinae (Fabaceae, Faboideae). Iselya 2:21–64.Google Scholar
  94. Lamprecht, H. 1945. A new ornamental plant from a cross between the garden bean and the scarlet runner bean. Agric. Hortique Genetica 3:14–32.Google Scholar
  95. Le Marchand, G. 1971. Observations sur quelques hybrides dans le genre Phaseolus. 1. Le problème des incompatibilités interspécifiques. Bull. Rech. Agron. Gembloux 6:441–452.Google Scholar
  96. Le Marchand, G. & R. Maréchal. 1977. Chromosome pairing in interspecific hybrids reveal the value of pollen morphology for deducting phylogenetic affinities in the genus Phaseolus. pp. 335–337. In Proceedings 8th Congr. Eucarpia, Interspecific hybridization in plant breeding, Madrid, Spain.Google Scholar
  97. Le Marchand, G., R. Maréchal & J.C. Baudet. 1976. Observations sur quelques hybrides dans le genre Phaseolus. 3. P. lunatus: nouveaux hybrides et considérations sur les affinités interspécifiques. Bull. Rech. Agron. Gembloux 11:183–200.Google Scholar
  98. Leonard, M.F., L.C. Stephens & W.L. Summers. 1987. Effect of maternal genotype on development of Phaseolus vulgaris L. × P. lunatus L. interspecific hybrid embryos. Euphytica 36:327–332.Google Scholar
  99. Lepoivre, P. & J.P. Baudoin. 1994. Caractérisation de l’agent responsable de l’ascochytose de Phaseolus vulgaris en Afrique et en Amérique du Sud. Bull. Séances Acad. Roy. Sci. Outre-Mer (Belgique) 39:557–566.Google Scholar
  100. Lewis, G.P. & A. Delgado Salinas. 1994. Mysanthus, a new genus in tribe Phaseoleae (Leguminosae: Papilionoideae) from Brazil. Kew Bull. 49:343–351.Google Scholar
  101. Llaca, V., A. Delgado Salinas & P. Gepts. 1994. Chloroplast DNA as an evolutionary marker in the Phaseolus vulgaris complex. Theor. Appl. Genet. 88:646–652.Google Scholar
  102. Lorz, A.P. 1952. An interspecific cross involving the Lima bean Phaseolus lunatus L. Science 115:702–703.PubMedGoogle Scholar
  103. Lynch, J., A. González, J.M. Tohme & J. Garcia. 1992. Variation in characters related to leaf photosynthesis in wild bean populations. Crop Sci. 32:633–640.Google Scholar
  104. Manshardt, R.M. & M.J. Bassett. 1984. Inheritance of stigma position in Phaseolus vulgaris × P. coccineus hybrid populations. J. Hered. 75:45–50.Google Scholar
  105. Maréchal, R. 1971. Observations sur quelques hybrides dans le genre Phaseolus. 2. Les phénomènes méiotiques. Bull. Rech. Agron. Gembloux 6:461–489.Google Scholar
  106. Maréchal, R. & J.P. Baudoin. 1978. Observations sur quelques hybrides dans le genre Phaseolus. 4. L’hybride Phaseolus vulgaris × P. filiformis. Bull. Rech. Agron. Gembloux 13:233–240.Google Scholar
  107. Maréchal, R., J.M. Mascherpa & F. Stainier. 1978. Etude taxonomique d’un groupe complexe d’espèces des genres Phaseolus et Vigna (Papilionaceae) sur la base de données morphologiques et polliniques, traitées par l’analyse informatique. Boissiera 28:1–273.Google Scholar
  108. McVaugh, R. 1987. Flora Novo-Galiciana — A descriptive account of the vascular plants of western Mexico — Volume 5 Leguminosae. The Univ. of Michigan Press, Ann Arbor, U.S.A.Google Scholar
  109. Mejía-Jiménez, A., C. Muñoz, H.J. Jacobsen, W.M. Roca& S.P. Singh. 1994. Interspecific hybridization between common and tepary beans: increased hybrid embryo growth, fertility, and efficiency of hybridization through recurrent and congruity backcrossing. Theor. Appl. Genet. 88:324–331.Google Scholar
  110. Miklas, P.N. & J. Santiago. 1996. Reaction of selected tepary bean to bean golden mosaic virus. HortScience 31:430–432.Google Scholar
  111. Miranda Colin, S. & A.M. Evans. 1973. Exploring the genetic isolating mechanisms between Phaseolus vulgaris and P. coccineus Lam. Annu. Rpt. Bean Improv. Coop. 16:39–41.Google Scholar
  112. Mirkov, T.E., J.M. Wahlstrom, K. Hagiwara, F. Finardi-Filho, S. Kjemtrup & M.J. Chrispeels. 1994. Evolutionary relationships among proteins in the phytohemagglutinin-arcelin-a-amylase inhibitor family of the common bean and its relatives. Plant Mol. Biol. 26:1103–1113.PubMedGoogle Scholar
  113. Mok, D.W.S., M.C. Mok & A. Rabakoarihanta. 1978. Interspecific hybridization of Phaseolus vulgaris with P. lunatus and P. acutifolius. Theor. Appl. Genet. 52:209–215.Google Scholar
  114. Nabhan, G.P. 1990. Wild Phaseolus ecogeography in the Sierra Madre Occidental, Mexico:areographic techniques for targeting and conserving species diversity. IBPGR, Rome, Italy.Google Scholar
  115. Nabhan, G.P., J.W. Berry & C.W. Weber. 1980. Wild beans of the Greater Southwest: Phaseolus metcalfei and P. ritensis. Econ. Bot. 34:68–85.Google Scholar
  116. Nelson, B.M. & P.D. Ascher. 1984. Influence of parental lines on making Phaseolus vulgarisP. acutifolius hybrids. Annu. Rpt. Bean Improv. Coop. 27:40–41.Google Scholar
  117. Nodari, R.O., S.M. Tsai, R.L. Gilbertson & P. Gepts. 1993. Towards an integrated linkage map of common bean. 2. Development of an RFLP-based linkage map. Theor. Appl. Genet. 85:513–520.Google Scholar
  118. Ockendon, D.J., L. Currah & J.D. Taylor. 1982. Transfer of resistance to halo-blight (Pseudomonas phaseolicola) from Phaseolus vulgaris to P. coccineus. Annu. Rpt. Bean Improv. Coop. 25:84–85.Google Scholar
  119. Osborn, T.C., D.C. Alexander, S.S.M. Sun, C. Cardona& F.A. Bliss. 1988. Insecticidal activity and lectin homology of arcelin seed protein. Science 240:207–210.Google Scholar
  120. Osborn, T.C., T. Blake, P. Gepts & F.A. Bliss. 1986. Bean arcelin. 2. Genetic variation, inheritance and linkage relationships of a novel seed protein of Phaseolus vulgaris L. Theor. Appl. Genet. 71:847–855.Google Scholar
  121. Park, S.J. & B.N. Dhanvantari. 1984. Breeding for resistance to common bacterial blight in interspecific crosses between Phaseolus vulgaris and P. coccineus. Annu. Rpt. Bean Improv. Coop. 27:179–180.Google Scholar
  122. Parker, J.P. & T.E. Michaels. 1986. Genetic control over hybrid plant development in interspecific crosses between Phaseolus vulgaris L. and P. acutifolius A. Gray. Annu. Rpt. Bean Improv. Coop. 29:22–23.Google Scholar
  123. Parsons, L.R. & T.K. Howe. 1984. Effects of water stress on the water relations of Phaseolus vulgaris and the drought resistant Phaseolus acutifolius. Physiol. Plant 60:197–202.Google Scholar
  124. Pernès, J. 1983. La génétique de la domestication des céréales. La Recherche 146:910–919.Google Scholar
  125. Petersen, A.C. & D.D. Davis. 1982. Yield response of Phaseolus vulgaris L. and Phaseolus acutifolius subjected to water stress. Annu. Rpt. Bean Improv. Coop. 25:53–54.Google Scholar
  126. Petzoldt, R. & M.H. Dickson. 1987. Interspecific hybridization of Phaseolus vulgaris with P. angustissimus, P. filiformis and P. ritensis. Annu. Rpt. Bean Improv. Coop. 30:94–95.Google Scholar
  127. Pifíero, D. & L. Eguiarte. 1988. The origin and biosystematic status of Phaseolus coccineus subsp. polyanthus: electrophoretic evidence. Euphytica 37:199–203.Google Scholar
  128. Piper, C.V. 1926. Studies in American Phaseolinae. Contr. US Nat. Herb. 22:663–701.Google Scholar
  129. Prendota, K., J.P. Baudoin & R. Maréchal. 1982. Fertile allopolyploids from the cross Phaseolus acutifolius × P. vulgaris. Bull. Rech. Agron. Gembloux 17:177–190.Google Scholar
  130. Pueyo, J.J. & A. Delgado Salinas. 1997. Presence of ∝-amylase inhibitor in some members of the subtribe Phaseolinae (Phaseoleae: Fabaceae). Amer. J. Bot. 84:79–84.Google Scholar
  131. Rabakoarihanta, A., D.W.S. Mok & M.C. Mok. 1979. Fertilization and early embryo development in reciprocal interspecific crosses of Phaseolus. Theor. Appl. Genet. 54:55–59.Google Scholar
  132. Rick, C.M. & P.G. Smith. 1953. Novel variation in tomato species hybrids. Amer. Nat. 87:359–373.Google Scholar
  133. Schinkel, C. & P. Gepts. 1988. Phaseolin diversity in the tepary bean, Phaseolus acutifolius A. Gray. Plant Breed. 101:292–301.Google Scholar
  134. Schmit, V. & J.P. Baudoin. 1992. Screening for resistance to Ascochyta blight in populations of Phaseolus coccineus L. and P. polyanthus Greenman. Field Crops Res. 30:155–165.Google Scholar
  135. Schmit, V., J.P. Baudoin & B. Wathelet. 1991. Considerations about the taxonomical position of various taxa of the P. coccineus complex on the basis of seeds protein electrophoresis and experimental hybridizations. Annu. Rpt. Bean Improv. Coop. 34:87–88.Google Scholar
  136. Schmit, V. & D.G. Debouck. 1991. Observations on the origin of Phaseolus polyanthus Greenman. Econ. Bot. 45:345–364.Google Scholar
  137. Schmit, V., D.G. Debouck & J.P. Baudoin. 1996. Biogeographical and molecular observations on Phaseolus glabellus (Fabaceae, Phaseolinae) and its taxonomic status. Taxon 45:493–501.Google Scholar
  138. Schmit, V., P. du Jardin, J.P. Baudoin & D.G. Debouck. 1993. Use of chloroplast DNA polymorphisms for the phylogenetic study of seven Phaseolus taxa including P. vulgaris and P. coccineus. Theor. Appl. Genet. 87:506–516.Google Scholar
  139. Schneider, K.A., M.E. Brothers & J.D. Kelly. 1997. Marker-assisted selection to improve drought resistance in common bean. Crop Sci. 37:51–60.Google Scholar
  140. Schoonhoven, A. van & C. Cardona. 1982. Low levels of resistance to the Mexican bean weevil in dry beans. J. Econ. Entomol. 75:567–569.Google Scholar
  141. Schoonhoven, A. van, C. Cardona & J. Valor. 1983. Resistance to the bean weevil and the Mexican bean weevil (Coleoptera:Bruchidae) in noncultivated common bean accessions. J. Econ. Entomol. 76:1255–1259.Google Scholar
  142. Schumann, K. & W. Nagl. 1995. PCR amplification of the phaseolin-genes in 18 species of the genus Phaseolus. Annu. Rpt. Bean Improv. Coop. 38:107–108.Google Scholar
  143. Shii, C.T., A. Rabakoarihanta, M.C. Mok & D.W.S. Mok. 1982. Embryo development in reciprocal crosses of Phaseolus vulgaris L. and P. coccineus Lam. Theor. Appl. Genet. 62:59–64.Google Scholar
  144. Singh, S.P. 1992. Common bean improvement in the tropics. Plant Breed. Rev. 10:199–269.Google Scholar
  145. Singh, S.P., D.G. Debouck & W.M. Roca. 1997a. Successful interspecific hybridization between Phaseolus vulgaris L. and P. costaricensis Freytag & Debouck. Annu. Rpt. Bean Improv. Coop. 40:40–41.Google Scholar
  146. Singh, S.P., A. Molina & P. Gepts. 1995. Potential of wild common bean for seed yield improvement of cultivars in the tropics. Can J. Plant Sci. 75:807–813.Google Scholar
  147. Singh, S.P. & C.G. Muñoz. 1999. Resistance to common bacterial blight among Phaseolus species and common bean improvement. Crop Sci. 39:80–89.Google Scholar
  148. Singh, S.P., W.M. Roca & D.G. Debouck. 1997b. Ampliación de la base genética de los cultivares de frijol: hibridación interespecífica en especies de Phaseolus. pp. 9–19. In S. P. Singh & O. Voysest (eds.), Taller de Mejoramiento de Frijol para el Siglo XXI: Bases para Una Estrategia para América Latina. CIAT, Cali, Colombia.Google Scholar
  149. Smartt, J. 1970. Interspecific hybridization between cultivated American species of the genus Phaseolus. Euphytica 19:480–489.Google Scholar
  150. Smartt, J. 1973. The possible status of Phaseolus coccineus L. ssp. darwinianus Hdz. X. et Miranda C. as a distinct species and cultigen of the genus Phaseolus. Euphytica 22:424–426.Google Scholar
  151. Smartt, J. 1976. Comparative evolution of pulse crops. Euphytica 25:139–143.Google Scholar
  152. Smartt, J. 1979. Interspecific hybridization in the grain legumes — A review. Econ. Bot. 33:329–337.Google Scholar
  153. Smartt, J. 1985. Evolution of grain legumes. IV. Pulses in the genus Phaseolus. Expl. Agric. 21:193–207.Google Scholar
  154. Smartt, J. 1988. Morphological, physiological and biochemical changes in Phaseolus beans under domestication, pp. 143–161. In P. Gepts (ed.), Genetic Resources of Phaseolus Beans. Kluwer, Dordrecht, Netherlands.Google Scholar
  155. Smartt, J. 1990. Vavilov’s Law of Homologous Series and de novo crop plant domestication. Biol. J. Linnean Soc. 39:27–38.Google Scholar
  156. Smartt, J. & N. Haq. 1972. Fertility and segregation of the amphidiploid Phaseolus vulgaris L. × P. coccineus L. and its behaviour in backcrosses. Euphytica 21:496–501.Google Scholar
  157. Smartt, J., N. Haq & M. Nassar. 1974. The production of interspecific hybrids using Phaseolus coccineus L. as seed parent. Annu. Rpt. Bean Improv. Coop. 17:80–81.Google Scholar
  158. Steadman, J.R. 1993. White mold (Sclerotinia) resistance identified in national bean nursery. Annu. Rpt. Bean Improv. Coop. 36:178–179.Google Scholar
  159. Sullivan, J.G. & G. Freytag. 1986. Predicting interspecific compatibilities in beans (Phaseolus) by seed protein electrophoresis. Euphytica 35:201–209.Google Scholar
  160. Thomas, C.V. & J.G. Waines. 1980. Interspecific hybridization between Phaseolus vulgaris and P. acutifolius. Annu. Rpt. Bean Improv. Coop. 23:75–77.Google Scholar
  161. Thomas, C.V. & J.G. Waines. 1984. Fertile backcross and allotetraploid plants from crosses between tepary beans and common beans. J. Hered. 75:93–98.Google Scholar
  162. Thomas, H. 1964. Investigations into the inter-relationships of Phaseolus vulgaris L. and P. coccineus L. Genetica 35:59–74.Google Scholar
  163. Tohme, J., D.O. Gonzalez, S. Beebe & M.C. Duque. 1996. AFLP analysis of gene pools of a wild bean core collection. Crop Sci. 36:1375–1384.Google Scholar
  164. Toro Ch. O., L. Lareo & D.G. Debouck. 1993. Observations on a noteworthy wild lima bean, Phaseolus lunatus L., from Colombia. Annu. Rpt. Bean Improv. Coop. 36:53–54.Google Scholar
  165. Urban, I. 1928. Plantae cubenses novae vel rariores a clo. Er. L. Ekman lectae. IV. Symbolae Antillanae 9:433–568.Google Scholar
  166. Valladares, N., D.P. Coyne, M.L. Schuster & B. Hoff. 1977. Reaction of Phaseolus germplasm to different strains of Xanthomonas phaseoli and X. phaseoli var.fuscans. Annu. Rpt. Bean Improv. Coop. 20:74–75.Google Scholar
  167. Vavilov, N.I. 1922. The law of homologous series in variation. J. Genet. 12:47–89.Google Scholar
  168. Verdcourt, B. 1970. Studies in the Leguminosae-Papilionoideae for the flora of tropical East Africa. IV. Kew Bull. 24:507–569.Google Scholar
  169. Wall, J.R. 1970. Experimental introgression in the genus Phaseolus. I. Effect of mating systems on interspecific gene flow. Evolution 24:356–366.Google Scholar
  170. Wall, J.R. & T.L. York. 1957. Inheritance of seedling cotyledon position in Phaseolus species. J. Hered. 48:71–74.Google Scholar
  171. Weilenmann de Tau, E., J.P. Baudoin & R. Maréchal. 1986. Obtention d’allopolyploïdes fertiles chez le croisement entre Phaseolus vulgaris et Phaseolus filiformis. Bull. Rech. Agron. Gembloux 21:35–46.Google Scholar
  172. Westphal, E. 1974. Pulses in Ethiopia, their taxonomy and agricultural significance. Agr. Res. Rpt. No. 815. Centre for Agricultural Publishing and Documentation, Wageningen, Netherlands.Google Scholar
  173. Wilhelm de Mosbach, E. 1992. Botánica Indígena de Chile. Editorial Andres Bello, Santiago, Chile.Google Scholar
  174. Wilkinson, R.E. 1983. Incorporation of Phaseolus coccineus germplasm may facilitate production of high yielding P. vulgaris lines. Annu. Rpt. Bean Improv. Coop. 26:28–29.Google Scholar
  175. Zapata, M., G.F. Freytag & R.E. Wilkinson. 1985. Evaluation for bacterial blight resistance in beans. Phytopathology 75:1032–1039.Google Scholar
  176. Zink, D. & W. Nagl. 1998. Interspecific microsatellite-primed PCR analysis in twenty different Phaseolus species. Annu. Rpt. Bean Improv. Coop. 41:109–110.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Daniel G. Debouck
    • 1
  1. 1.Centro Internacional de Agricultura Tropical (CIAT)CaliUSA

Personalised recommendations