Aperiodic Hierarchical Tilings

  • Chaim Goodman-Strauss
Part of the NATO ASI Series book series (NSSE, volume 354)

Abstract

A substitution tiling is a certain globally defined hierarchical structure in a geometric space. In [6] we show that for any substitution tiling in En, n > 1, subject to relatively mild conditions, one can construct local rules that force the desired global structure to emerge. As an immediate corollary, infinite collections of forced aperiodic tilings are constructed. Here we give an expository account of the construction. In particular, we discuss the use of hierarchical, algorithmic, geometrically sensitive coordinates—“addresses”, developed further in [9].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Berger, The undecidability of the domino problem, Memoirs Am. Math. Soc. 66 (1966).Google Scholar
  2. 2.
    N.C. de Bruijn, Algebraic theory of Penrose’s non-periodic tilings,Nederl. Akad. Wentensch Proc. Ser. A 84 (1981), 39–66.Google Scholar
  3. 3.
    L. Danzer, A family of SD-spacefillers not permitting any periodic or quasiperiodic tilingpreprint Google Scholar
  4. 4.
    L. Danzer, personal communication.Google Scholar
  5. 5.
    C. Godreche, The sphinx: a limit periodic tiling of the plane, J. F’hys. A: Math. Gen. 22 1989, L1163 - L1166.CrossRefGoogle Scholar
  6. 6.
    C. Goodman-Strauss, Matching rules and substitution tilings,to appear in Aimais of Math.Google Scholar
  7. 7.
    C. Goodman-Strauss, A small aperiodic set of tiles, preprint.Google Scholar
  8. 8.
    C. Goodman-Strauss, An aperiodic tiling of E“ for all n 1, preprint.Google Scholar
  9. 9.
    C Goodman-Strauss, Addresses and substitution tidings, in preparation.Google Scholar
  10. 10.
    B. Grunbaum and G.C. Shepherd, Tilings and patterns, W.H. Freeman and Co. (1989).Google Scholar
  11. 11.
    J. Kari, A small aperiodic set of Wang tiles, preprint.Google Scholar
  12. 12.
    T.T.Q. Le, Local rules for quasiperiodic tidings, Proceedings of the Fields Institute (1995).Google Scholar
  13. 13.
    J.M. Luck, Aperiodic structures: geometry, diffraction spectra, and physical properties, to appear in Fund. Prob. in Stat. Mech VIII.Google Scholar
  14. 14.
    S. Mozes, Tilings, substitution systems and dynamical systems generated by them, J. D’Analyse Math. 53 (1989), 139–186.CrossRefGoogle Scholar
  15. 15.
    R. Penrose, The role of aesthetics in pure and applied mathematical research, Bull. Inst. of Math. and its Appl. 10 (1974) 266–71.Google Scholar
  16. 16.
    P. Prusinkiewicz and A. Lindenmeyer, The Algorithmic Beauty of Plants, Springer-Verlag (1990).Google Scholar
  17. 17.
    Radin, The pinwheel things of the plane, Annals of Math. 139 (1994), 661–702.Google Scholar
  18. 18.
    C. Radin, personal communication.Google Scholar
  19. 19.
    E.A. Robinson, personal communication.Google Scholar
  20. 20.
    R. Robinson, Undecidability and nonperiodicity of tidings in the plane, Inv. Math. 12 (1971), 177.Google Scholar
  21. 21.
    L. Sadun, Some generalizations of the pinwheel tiling, preprint.Google Scholar
  22. 22.
    M. Senechal, Quasicrystals and geometry, Cambridge University Press (1995).Google Scholar
  23. 23.
    J.E.S Socolar, personal communication.Google Scholar
  24. 24.
    J.E.S. Socolar and P.J. Steinhardt, Quasicrystals II. Unit cell configurations, Physical Review B 34 (1986), 617–647.CrossRefGoogle Scholar
  25. 25.
    B. Solomyak, Non-periodicity implies unique composition for self-similar translationally-finite tilings, to appear in J.Disc. and Comp. Geometry.Google Scholar
  26. 26.
    P.J. Steinhardt and S. Ostlund, The physics of quasicrystals, World Scientific (1987).Google Scholar
  27. 27.
    W. Thurston, Croups, tilings and finite state automata: Summer 1989 AMS collo-quint lectures, GCG 1, Geometry Center.Google Scholar
  28. 28.
    P. Walters, editor, Symbolic dynamics and its applications, Contemporary Mathematics 135 (1992).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Chaim Goodman-Strauss
    • 1
  1. 1.University of ArkansasFayettevilleUSA

Personalised recommendations