Computational Strategies for Modeling Receptor Flexibility in Studies of Receptor-Ligand Interactions

  • R. C. Wade
  • S. Lüdemann
Part of the NATO ASI Series book series (NSSE, volume 352)


All biomolecular binding processes involve molecular dynamics, even those apparently corresponding to the rigid lock-and-key model. However, while it is becoming increasingly common to treat the flexibility of small ligands explicitly in drug design studies, the flexibility of macromolecular receptors is often ignored. Here, the different types of receptor motions on ligand binding are described and their implications for drug design discussed. Methods to model and simulate receptor dynamics on ligand binding are outlined. Their current usage in the context of structure-based drug design is described.


Ligand Binding Monte Carlo Free Energy Difference Conformational Search Flexible Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Brownian: dynamics


conformational search


energy minimization


molecular mechanics


Monte Carlo


molecular dynamics


nuclear magnetic resonance


potential of mean force


quantum mechanics


root mean square deviation


simulated annealing


thermodynamic integration


thermodynamic perturbation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fischer, E. (1894) Einfluss der Configuration auf die Wirkung der Enzyme, Ber. Deutsch Chem. Ges., 27, 2985–2993.CrossRefGoogle Scholar
  2. 2.
    Scott, D.L., White, S.P., Otwinowski, Z., Yuan, W., Gelb, M.H. and Sigler, P.B. (1990) Interfacial Catalysis: The Mechanism of Phospholipase A2, Science, 250, 1541–1563.CrossRefGoogle Scholar
  3. 3.
    Scott, D.L., White, S.P., Browning, J.L., Rosa, J.J., Gelb, M.H. and Sigler, P.B. (1991) Structures of Free and Inhibited Human Secretory Phospolipase A2 from Inflamatory Exudate, Science, 254, 1007–1010.CrossRefGoogle Scholar
  4. 4.
    van den Berg, B., Tessari, M., Boelens, R., Dijkman, R., de Haas, G.H., Kaptein, R. and Verheij, H. (1995) NMR structures of phospholipase A2 reveal conformational changes during interfacial activation, Nature Structure Biology, 2, 402–406.CrossRefGoogle Scholar
  5. 5.
    Burgen, A.S.V., Roberts, G.C.K. and Feeny, J. (1975) Binding of flexible ligands to macromolecules, Nature, 253, 753–755.CrossRefGoogle Scholar
  6. 6.
    Koshland, D.E. (1958) Applications of a Theory of Enzyme Specificity to Protein Synthesis, Proc. Natl. Acad. Sci., 44, 98–104.CrossRefGoogle Scholar
  7. 7.
    McCammon, J.A. and Northrup, S.H. (1981) Gated binding of ligands to proteins, Nature, 293, 316–317.CrossRefGoogle Scholar
  8. 8.
    Mattos, C. and Ringe, D. (1993) Multiple Binding Modes, in 3D QSAR in Drug Design, H. Kubinyi, Editor. ESCOM: Leiden. p. 226–254.Google Scholar
  9. 9.
    Morton, A. and Matthews, B.W. (1995) Specificity of ligand binding in a buried nonpolar cavity of T4 lysozyme: linkage of dynamics and structural plasticity, Biochemistry, 34, 8576–8588.CrossRefGoogle Scholar
  10. 10.
    Diana, G.D., McKinlay, M.A., Otto, M., Akullian, V. and Oglesby, C. (1985) [[(4,5-dihydro-2-oxazolyl)phenoxy]alkyl]isoxazoles. Inhibitors of picornavirus uncoating, J. Med. Chem., 28, 1906–1910.CrossRefGoogle Scholar
  11. 11.
    Kim, K.H., Willingmann, P., Gong, Z.X., Kremer, M.J., Chapman, M.S., Minor, I., Oliveira, M.A., et al. (1993) A comparison of the anti-rhinoviral drug pocket in HRV14 and HRV1A, J. Mol. Biol., 230, 206–227.CrossRefGoogle Scholar
  12. 12.
    Fritzche, H. (1994) Infrared linear dichroism studies of DNA-drug complexes: quantitative determination of the drug-induced restriction of the B-A transition, Nucl. Acids Res., 22, 787–791.CrossRefGoogle Scholar
  13. 13.
    Warshel, A. (1991) Computer Modelling of Chemical Reactions in Enzymes and Solutions. New York: J. Wiley.Google Scholar
  14. 14.
    Bala, P., Grochowski, P., Lesyng, B. and McCammon, J.A. (1996) Quantum-Classical Molecular Dynamics Simulations of Proton Transfer Processes in Molecular Complexes and in Enzymes, J. Phys. Chem., 100, 2535–2545.CrossRefGoogle Scholar
  15. 15.
    Luty, B.A., El Amrani, S. and McCammon, J.A. (1993) Simulation of the Bimolecular Reaction between Superoxide and Superoxide Dismutase: Synthesis of the Encounter and Reaction Steps, J. Am. Chem. Soc., 115, 11874–11877.CrossRefGoogle Scholar
  16. 16.
    McCammon J. A. and Harvey, S.C. (1987) Dynamics of Proteins and Nuclear Acids. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  17. 17.
    Brooks, C.L., Karplus, M. and Pettitt, M. (1988) Proteins: A Theoretical Perspective of Dynamics, Structure and Thermodynamics. Advances in Chemical Physics, ed. I. Prigogne and S.A. Rice. Vol. 71. New York: Wiley.Google Scholar
  18. 18.
    Worth, G.A., Lecuyer, C. and Wade, R.C. (1996) TRAJAN: A Tool to Analyze Trajectories from Molecular Simulations, J. Mol. Graph., in press.Google Scholar
  19. 19.
    van Aalten, D.M.F., Findlay, J.B.C., Amadei, A. and Berendsen, H.J.C. (1995) Essential dynamics of the cellular retinol-binding protein — evidence for ligand-induced conformational changes, Protein Eng., 8, 1129–1135.CrossRefGoogle Scholar
  20. 20.
    Boobbyer, D.N.A., Goodford, P.J., McWhinnie, P.M. and Wade, R.C. (1989) New hydrogen-bond potentials for use in determining energetically favorable binding sites on molecules of known structure, J. Med. Chem., 32, 1083–1094.CrossRefGoogle Scholar
  21. 21.
    Rarey, M., Kramer, B. and Lengauer, T. (1995) Time-efficient docking of flexible ligands into active sites of proteins, ISMB, 3, 300–308.Google Scholar
  22. 22.
    Jones, G.W., P. and Glen, R. (1995) Molecular Recognition of Receptor Sites using a Genetic Algorithm with a Description of Desolvation, J. Mol. Biol., 245, 43–53.CrossRefGoogle Scholar
  23. 23.
    Mizutani, M.Y., Tomioka, N. and Itai, A. (1994) Rational automatic search method for stable docking models of protein and ligand., J. Mol. Biol., 243, 310–326.CrossRefGoogle Scholar
  24. 24.
    Caflisch, A., Niederer, P. and Anliker, M. (1992) Monte Carlo Docking of Oligopeptides to Proteins, Proteins:Structure, Function and Genetics, 13, 223–230.CrossRefGoogle Scholar
  25. 25.
    Morris, G.M., Goodsell, D.S., Huey, R. and Olson, A.J. (1996) Distributed automated docking of flexible ligands to proteins: parallel application of AutoDock 2.4, J. Comp. Aided Mol. Des., in press.Google Scholar
  26. 26.
    Calfisch, A., Miranker, A. and Karplus, M. (1993) Multiple copy simultaneous search and construction of ligands in binding sites: application to inhibitors of HIV-1 aspartic proteinase, J. Med. Chem., 36, 2142–2164.CrossRefGoogle Scholar
  27. 27.
    Abagyan, R., Totrov, M. and Kuznetsov, D. (1994) ICM — A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation, J. Comp. Chem., 15, 488–506.CrossRefGoogle Scholar
  28. 28.
    Leach, A.R. (1994) Ligand docking to proteins with discrete Side-chain Flexibility, J. Mol. Biol., 345–356.Google Scholar
  29. 29.
    Wade, R.C. (1993) Molecular Interaction Fields, in 3D QSAR in Drug Design. Theory, Methods and Applications, H. Kubinyi, Editor. ESCOM, Leiden. p. 486–505.Google Scholar
  30. 30.
    Helms, V., Deprez, E., Gill, E., Barret, C., Hui Bon Hoa, G. and Wade, R.C. (1996) Improved binding of cytochrome P450cam substrate analogues designed to fill extra space in the substrate binding ocket, Biochemistry, 35, 1485–1499.CrossRefGoogle Scholar
  31. 31.
    Di Nola, A., Roccatano, D. and Berendsen, H.J.C. (1994) Molecular Dynamics Simulation of the Docking of Substrates to Proteins, Proteins, 19, 174–182.CrossRefGoogle Scholar
  32. 32.
    Miranker, A. and Karplus, M. (1991) Functionality maps of binding sites: a multicopy simultaneous search method, Proteins, 1, 29–34.CrossRefGoogle Scholar
  33. 33.
    Elber, R. and Karplus, M. (1990) Enhanced sampling in molecular dynamics: use of the time-dependent Hartree approximation for a simulations of carbon monoxide diffusion through myoglobin, J. Am. Chem. Soc., 112, 9161–9175.CrossRefGoogle Scholar
  34. 34.
    Rosenfeld, R., Zheng, Q., Vajda, S. and DeLisi, C. (1993) Computing the structure of bound peptides: application to antigen recognition by class I MHCs, J. Mol. Biol., 234, 515–521.CrossRefGoogle Scholar
  35. 35.
    Luty, B.A., Wasserman, Z.R., Stouten, P.F.W., Hodge, C.N., Zacharias, M. and McCammon, J.A. (1995) A molecular mechanics/grid method for evaluation of ligand-receptor interactions, J. Comp. Chem., 16, 454–464.CrossRefGoogle Scholar
  36. 36.
    Wasserman, Z.R. and Hodge, N.C. (1996) Fitting an Inhibitor into the active site of Thermolysin: A molecular dynamics case study, Proteins, 24, 227–237.CrossRefGoogle Scholar
  37. 37.
    Straatsma, T.P. and McCammon, J.A. (1992) Computational Alchemy, Annu. Rev. Phys. Chem., 41, 407–435.CrossRefGoogle Scholar
  38. 38.
    Wade, R.C. and McCammon, J.A. (1992) Binding of an Antiviral Agent to a sensitive and a resistant Human Rhinovirus. Computer Simulations Studies with Sampling of Amino Acid Side-chain Conformations. I Mapping the Rotamers of Residue 188 of Viral Protein 1, J. Mol.Biol., 679–696.Google Scholar
  39. 39.
    Wade, R.C. and McCammon, J.A. (1992) Binding of an Antiviral Agent to a sensitive and a resistant Human Rhinovirus. Computer Simulations Studies with Sampling of Amino Acid Side-chain Conformations. II. Calculations of Free-energy Differences by Thermodynamic Integration, J.Mol.Biol., 697–712.Google Scholar
  40. 40.
    Boehm, H.-J. (1994) The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure, J. Comp. Aided Mol. Des., 8, 243–256.CrossRefGoogle Scholar
  41. 41.
    Ortiz, A.R., Pisabarro, M.T., Gago, F. and Wade, R.C. (1995) Prediction of Drug Binding Affinities by comparative Binding Energy Analysis, J. Med. Chem., 38, 2681–2691.CrossRefGoogle Scholar
  42. 42.
    Holloway, M.K., Wai, J.M., Halgren, T.A., Fitzgerald, P.M.D., Vacca, J.P., Dorsey, B.D., Levin, R.B., et al. (1995) A priori predictions of activity for HIV-1 protease inhibitors employing energy minimization in the active site, J. Med. Chem., 38, 305–317.CrossRefGoogle Scholar
  43. 43.
    Grootenhuis, P.D.J. and van Galen, P.J.M. (1995) Correlation of Binding Affinities with Non-bonded Interaction Energies of Thrombin-Inhibitor Complexes, Acta Cryst. D., 51, 560–566.CrossRefGoogle Scholar
  44. 44.
    Northrup, S.H., Zarin, F. and McCammon, J.A. (1982) Rate Theory for Gated Diffusion-influenced Ligand Binding to Proteins, J. Phys. Chem, 86, 2314–2321.CrossRefGoogle Scholar
  45. 45.
    Roux, B. and Karplus, M. (1994) Molecular dynamics of the Gramicidin channel, Annu. Rev. Biophys. Biomol. Struct. , 23, 731–761.CrossRefGoogle Scholar
  46. 46.
    Getzoff, E.D., Cabelli, D.E., Fisher, C.L., Parge, H.E., Viezzoli, M.S., Banci, L. and Hallewell, R.A. (1992) Faster Superoxide Dismutase Mutants Designed by Enhancing Electrostatic Guidance, Nature, 358, 347–351.CrossRefGoogle Scholar
  47. 47.
    Wade, R.C., Luty, B.A., Davis, M.E., Madura, J.D. and McCammon, J.A. (1993) Gating of the Active Site of Triose Phosphate Isomerase: Brownian Dynamics Simulations of Flexible Peptide Loops in the Enzyme, Biophys. J., 64, 9–15.CrossRefGoogle Scholar
  48. 48.
    Peters, G.H., Olsen, O.H., Svendsen, A. and Wade, R.C. (1996) Theoretical investigation of the dynamics of the Active Site Lid in Rhizomucor Miehei Lipase, Biophys. J., in press.Google Scholar
  49. 49.
    Wade, R.C., Luty, B.A., Demchuk, E., Madura, J.D., Davis, M.E., Briggs, J.M. and McCammon, J.A. (1994) Simulation of enzyme-substrate encounter with gated active sites, Nature Struct. Biol, 1, 65–69.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • R. C. Wade
    • 1
  • S. Lüdemann
    • 1
  1. 1.European Molecular Biology LaboratoryHeidelbergGermany

Personalised recommendations