Modeling Social Change with Cellular Automata

  • Andrzej Nowak
  • Maciej Lewenstein
Part of the Theory and Decision Library book series (TDLA, volume 23)


In this paper we will first discuss computer simulations of social processes as models of qualitative understanding. In the second part of the paper we will present the cellular automata model of dynamic social impact (Nowak et al. 1990) and its applications in the areas of the formation of public opinion and social change as an example of a model of qualitative understanding.


Computer Simulation Social Change Cellular Automaton Social Process Social Influence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abelson, R.P. (1964) Mathematical models of the distribution of attitudes under controversy. N. Fredricksen and H. Gullicksen (eds.), Contributions to mathematical psychology, New York: Holt, Rinehart and Winston, pp. 142–160.Google Scholar
  2. Amit, D.J. (1989) Modeling Brain Function: The World of Attractor Neural Networks. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  3. Anderson, R.M., and May, R.M. (1991) Infectious Diseases of Humans: Dynamics and Control. Oxford: Oxford University Press.Google Scholar
  4. Arnold, V. I. (1983) Geometrical Methods in the Theory of Ordinary Differential Equations. New York: Springer.CrossRefGoogle Scholar
  5. Arnold, V. I. (1978) Mathematical Methods of Classical Mechanics. New York: Springer.Google Scholar
  6. Axelrod, R. (1984) The evolution of cooperation. New York: Basic Books.Google Scholar
  7. Bandura, A. (1982) The psychology of chance encounters and life paths. American Psychologist, 37, pp. 747–755.CrossRefGoogle Scholar
  8. Baron, R.M., Amazeen, P., and Beek, P.J. (1994) Local and global dynamics of social relations. Vallacher, R., and Nowak, A. (eds.) Dynamical systems in social psychology. San Diego, CA: Academic PressGoogle Scholar
  9. Başar, E. (1990) Chaos in Brain Function. Berlin: Springer.CrossRefGoogle Scholar
  10. Batten, D., Casti, J.L., and Johansson, B. (eds.) (1987) Economic Evolution and Structural Adjustment. Lecture Notes in Economics and Mathematical Systems, 293, Berlin: Springer.Google Scholar
  11. Bradfort, M.G., and Kent, W.A. (1977) Human Geography: Theories and their applications. Oxford: Oxford University Press.Google Scholar
  12. Brown, J.R. (1995) Visualization: using computer graphics to explore data and present information. New York: WileyGoogle Scholar
  13. Brown, R. (1988) Group processes: Dynamics within and between groups. Oxford: Basil Blackwell.Google Scholar
  14. Conte, R., and Castelfranchi, C. (1994) Mind is not enough: the precognitive basis for social interaction. N. Gilbert, and J.E. Doran (eds.), Simulating societies: The computer simulations of social processes. London: University College London Press, pp. 267– 286.Google Scholar
  15. Converse, P. (1964) The nature of belief systems in mass public. D.E. Apter (ed.), Ideology and discontent. New York: The Free Press.Google Scholar
  16. Cooley, C.H. (1964) Human nature and social order. New York: Schonen Books.Google Scholar
  17. Crespi, I. (1988) Pre-election polling. New York: Russel Sage Foundation.Google Scholar
  18. Dewdney, A.K. (1985) Computer recreations. Scientific American, p. 4.Google Scholar
  19. Doran, J.E., and Gilbert, N. (1994) Simulating societies: an introduction. N. Gilbert, and J.E. Doran (eds.), Simulating societies: The computer simulations of social processes. London: University College London Press, pp. 1–18.Google Scholar
  20. Durkheim, E. (1938) The rules of sociological method. Chicago: University of Chicago Press.Google Scholar
  21. Eckmann, J.P., and Ruelle, D. (1985) Ergodic theory of chaos and strange attractors. Review of Modern Physics, 57, pp. 617– 656.CrossRefGoogle Scholar
  22. Eiser, J.R. (1994) Toward a dynamic conception of attitude consistency and change. Vallacher, R., and Nowak, A. (eds.) Dynamical systems in social psychology. San Diego, CA: Academic PressGoogle Scholar
  23. Festinger, L., Schachter, S., and Back, K. (1950) Social Pressures in informal groups. Stanford, CA: Stanford University Press.Google Scholar
  24. Friedmann, J. (1966) Regional development policy: A case study of Venezuala, Cambridge, MIT Press.Google Scholar
  25. Friedmann, J. (1973) Urbanization, planning, and national development, Beverly Hills: Sage.Google Scholar
  26. Gardner, M. (1970) Mathematical Games. Scientific American, p. 9.Google Scholar
  27. Glansdorff, P., and Prigogine, I. (1971) Thermodynamic Theory of Structure, Stability and Fluctuations. New York: J. Wiley.Google Scholar
  28. Glass, L., and Mackey, M.C. (1988) From Clocks to Chaos: The Rhythms of Life. Princeton, NJ: Princeton University Press.Google Scholar
  29. Grave, M., LeLous, M., Hevitt, W.T., (eds.) (1994) Visualization in scientific computing. Berlin: Springer.Google Scholar
  30. Haken, H. (1978) Synergetics. Berlin: Springer.CrossRefGoogle Scholar
  31. Haken, H. (ed.) (1982) Order and chaos in physics, chemistry, and Biology. Berlin: Springer.Google Scholar
  32. Haken, H. (1983) Advanced Synergetics. Berlin: Springer.Google Scholar
  33. Haken, H. (ed.) (1985) Complex systems: operational approaches in neurobiology, physics and computer science. Berlin: Springer.Google Scholar
  34. Hao Bai-Lin (ed. )(1987) Directions in Chaos. World Scientific, Singapore.Google Scholar
  35. Hillier, B., and Hanson, J. (1990) The social logic of space. New York: Cambridge University Press.Google Scholar
  36. Hillier, B., and Penn, A. (1991) Visible colleges: Structure and randomness in the place of discovery. Science in context, 4, pp. 23–49.CrossRefGoogle Scholar
  37. Hegselmann, R. (in press) Modeling social phenomena by cellular automata. W.B.G. Liebrand, A.Nowak and R. Hegselmann (eds.), Computer modeling of network dynamics, Sage, in pressGoogle Scholar
  38. Hegselmann, R. (1994) Zur Selbstorganisation von Solidarnetzwerken unter Ungleichen — Ein Simulationsmodell. K. Homann (ed.), Wirtschaftsethische Perspektiven I(Theorie, Ordnungsfragen, Internationale Institutionen), Berlin: Duncker and Humblot.Google Scholar
  39. Hegselmann, R., and Nowak A. (1994) The bargaining model of social interaction. Unpublished.Google Scholar
  40. Horgan, J. (1995) From complexity to perplexity. Scientific American, 272, pp. 104–109.CrossRefGoogle Scholar
  41. Hoyert, M.S. (1992) Order and chaos in fixed interval schedules of reinforcement. Journal of the experimental analysis of behavior, 57, pp. 339–363.CrossRefGoogle Scholar
  42. Iyengar, S., and McGuire, W.J. (eds.) (1992) Explorations in political psychology. Durham: Duke University Press.Google Scholar
  43. James, W. (1890) The Principles of Psychology. New York.CrossRefGoogle Scholar
  44. Kando, T.M. (1977) Social Interaction. Sant Luis: C. W. Mosby Company.Google Scholar
  45. Kapuściarek, I., and Nowak A. (1993) Physical distance and social interaction among the resident of Warsaw. Technical report.Google Scholar
  46. Kelso, J.A.S. (1981) On the oscillatory basis of movement. Bulletin of the Psychonomic Society, 18, p. 63.Google Scholar
  47. Kelso, J.A.S. (1984) Phase transitions and critical behavior in human bimanual coordination. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 15, pp. R1000-R1004.Google Scholar
  48. Kelso, J.A.S. (1988) Order in time: How cooperation of hands informs the design of the brain. H. Haken (ed.), Neural and Synergetic Computers, Berlin: Springer, pp. 305–310.Google Scholar
  49. Kelso, J.A.S., Ding, M., and Schöner, G. (1991) Dynamic pattern formation — a primer. A. B. Baskin (ed.), Principles of organization in organisms. New York: Addison-Wesley, pp. 397–439.Google Scholar
  50. Kohonen, T. (1988) Self-organization and associative memory. New York: Springer.CrossRefGoogle Scholar
  51. Krech, D., Crutchfield, R.S., and Ballachey, E. (1962) Individual in society. New York: McGraw-Hill.Google Scholar
  52. Landau, L.D., and Lifshitz, E.M. (1964) Statistical Physics. Oxford: Pergamon Press.Google Scholar
  53. Langton, C.G., Taylor, C., Farmer D.J., and Rasmumssen, S. (eds.) (1992) Artificial Life II. Redwood City: Addison Wesley.Google Scholar
  54. Latané, B. (1981) The psychology of social impact. American Psychologist, 36, pp. 343–356.CrossRefGoogle Scholar
  55. Latané, B., Liu, J.H., Nowak, A., Bonavento, M., and Zheng, L. (1994) Distance matters: physical space and social influence. Personality and Social Psychology Bulletin, in press.Google Scholar
  56. Latané, B., and Nowak, A. (1994) Attitudes as catastrophes: From dimensions to categories with increasing importance. R. Vallacher and A. Nowak (eds.), Dynamical systems in social psychology. San Diego, CA: Academic Press.Google Scholar
  57. Latané, B., Nowak, A., and Liu, J.H. (1994) Measuring emergent social phenomena:Google Scholar
  58. dynamism, polarization and clustering as order parameters of dynamic social systems. Behavioral Science, 39, pp. 1–24,Google Scholar
  59. Latané, B., and Nowak, A. (in preparation) The causes of polarization and clustering in social groups. Google Scholar
  60. Liebrand, W.B.G., Messick, D.M., Wilke, H.A.M. (1992) Social Dilemmas, Oxford: Pergamon Press.Google Scholar
  61. Lewenstein, M., Nowak, A., and Latané, B. (1992) Statistical mechanics of social impact. Physical Review A, 45, pp. 703–716.Google Scholar
  62. Lewin, K. (1936) A dynamic theory of personality. New York: McGraw-Hill.Google Scholar
  63. Lorenz, E. (1963) Deterministic nonperiodic flow. Journal of Atmospheric Science, 20, pp. 282–293.Google Scholar
  64. Losada, M., and Markovitch, S. (1990) Group Analyser: A system for dynamic analysis of group interaction. Proceedings of the 23rd Hawaii International Conference on System Sciences, IV, Emerging technologies, pp. 101–110.Google Scholar
  65. May, R.M. (ed.) (1981) Theoretical ecology: Principles and applications. Oxford: Blackwell Scienific Publications.Google Scholar
  66. May, R.M., and Nowak, M.A. (1992) Evolutionary games and spatial chaos. Nature, 359, pp. 826–829.CrossRefGoogle Scholar
  67. May, R.M., Nowak, M.A. (1993) The spatial dilemmas of evolution. International Journal of Bifurcations and Chaos, p. 3, pp. 35–78.CrossRefGoogle Scholar
  68. Meadows, D., Richardson, J. , Bruckmann, G. (1982) Groping in the dark, New York: Wiley.Google Scholar
  69. Meehl, P.E. (1978) Theoretical risks and tabular asterisks: Sir Karl, Sir Ronald, and the slow progress of soft psychology. Journal of Consulting and Clinical Psychology, 46, pp. 806–834.CrossRefGoogle Scholar
  70. Messick, D.M., and Liebrand, W.B.G. (1995) Individual heuristics and dynamics of cooperation in large groups. Psychological Review, 102, pp. 131–145.CrossRefGoogle Scholar
  71. Moon, F.C. (1987) Chaotic Vibrations. New York: J. Wiley and Sons.Google Scholar
  72. Moscovici, S. (1963) Attitudes and opinions. Annual Review of Psychology, pp. 231–260.Google Scholar
  73. Moscovici, S., and Zavalloni, M. (1969) The group as a polarizer of attitudes. Journal of Personality and Social Psychology, 12, pp. 125–135.CrossRefGoogle Scholar
  74. Myers, D., and Lamm, H. (1976) The group polarization phenomena. Psychological Bulletin, 83, pp. 602–627.CrossRefGoogle Scholar
  75. Myrdal G. (1958) Rich lands and poor: the road to world prosperity. New York: Harper.Google Scholar
  76. Noelle-Neumann, E. (1984) The spiral of silence: Public opinion — our social skin. Chicago: University of Chicago Press.Google Scholar
  77. Newtson, D. (1994) The perception and coupling of behavior waves. R. Vallacher and A. Nowak (eds.), Dynamical systems in social psychology. San Diego, CA: Academic Press.Google Scholar
  78. Nowak, A., and Latané, B. (1994) Simulating the emergence of social order from individual behavior. N. Gilbert and J.E. Doran (eds.), Simulating societies: The computer simulations of social processes. London: University College London Press, pp. 63–84Google Scholar
  79. Nowak, A., Latané, B., and Lewenstein, M. (1994) Social Dilemmas exist in space. U. Schulz, W. Alberts and U. Mueller (eds.), Social dilemmas and corporation. Heidelberg: Springer.Google Scholar
  80. Nowak, A., and Lewenstein, M. (1994) Dynamical systems: A tool for social psychology? R. Vallacher and A. Nowak (eds.), Dynamical systems in social psychology. San Diego, CA: Academic Press.Google Scholar
  81. Nowak, A., Lewenstein, M., and Szamrej, J. (1993) Bąble modelem przemian społecznych, (Social transitions occur through bubbles). Swiat Nauki, 12, 28, pp. 16–25.Google Scholar
  82. Nowak, A., Lewenstein, M., and Szamrej, J. (in press) Bubbles — a model of social transitions. Scientific American. Google Scholar
  83. Nowak, A., Szamrej, J., and Latané, B. (1990) From private attitude to public opinion: a dynamic theory of social impact. Psychological Review, 97, pp. 362–376.CrossRefGoogle Scholar
  84. Nowak, A., Zienkowski, L., and Urbaniak, K. Clustering processes in economic transition. Research Bulletin RECESS, 3, 4, pp. 43–61.Google Scholar
  85. Ostrom, T.M., Skowronski, J.J., and Nowak, A. (1994) The cognitive foundations of attitudes: It’s a wonderful construct. P. G. Devine, D. L. Hamilton and T. M. Ostrom (eds.), Social cognition: Impact on social psychology. New York: Springer VerlagGoogle Scholar
  86. Othmer, H.G. (ed.) (1986) Non-linear Oscillations in Biology and Chemistry. Lecture Notes in Mathematics, 66, Berlin: Springer.Google Scholar
  87. Peitgen, H.-O., and Richter, P.H. (1986) The Beauty of Fractals. Berlin: Springer.CrossRefGoogle Scholar
  88. Pines, D. (1987) Emerging synthesis in science, Redwood City, Addison Wesley.Google Scholar
  89. Rasband, N.S. (1990) Chaotic Dynamics of Non-linear Systems. New York: J. Wiley and Sons.Google Scholar
  90. Ruelle, D. (1989) Elements of Differentiable Dynamics and Bifurcation Theory. New York: Academic Press.Google Scholar
  91. Ruelle, D., and Takens, F. (1971) On the nature of turbulence. Communications in Mathematical Physics, 20, pp. 167–192.CrossRefGoogle Scholar
  92. Schuster, H.G. (1984) Deterministic Chaos. Weinheim: Physik Verlag.Google Scholar
  93. Shaw, M.E. (1976) Group Dynamics (2nd ed.). New York: McGraw-Hill.Google Scholar
  94. Shaw, M.E., and Constanzo, P.R. (1982) Theories of Social Psychology. New York: McGraw-Hill.Google Scholar
  95. Schelling, T.C. (1969) Models of segregation. American Economical Review, 59, pp. 488– 493.Google Scholar
  96. Schelling, T.C. (1971) . Dynamic models of segregation. Journal of Mathematical Sociology, 1, pp. 143–186.CrossRefGoogle Scholar
  97. Séror, A.C. (1994) Simulation of complex organizational processes: a review of methods and their epistomological foundations. N. Gilbert and J.E. Doran (eds.), Simulating societies: The computer simulations of social processes. London: University College London Press, pp. 19–40.Google Scholar
  98. Sigmund, K. (1993) Games of life: explorations in ecology, evolution and behaviour, Oxford, Oxford University Press.Google Scholar
  99. Skarda, C.A., and Freeman, W.J. (1987) How brains make chaos in order to make sense of the world. Behavioral and Brain Sciences, 10, pp. 161–195.CrossRefGoogle Scholar
  100. Stein, D.L. (1988) Lectures in the sciences of complexity. Redwood City, Addison Wesley.Google Scholar
  101. Sperber, D. (1990) The epidemiology of beliefs. Fraser, C., Gaskel, G. (eds.) The social psychological study of widespread beliefs. Oxford: Clareden.Google Scholar
  102. Szamrej, J., Nowak, A., and Latané, B. (1992) Self-organizing attitudinal structures in society: visual display of dynamic social processes. Poster presented at XXV—th International Congress of Psychology, Brussels, Belgium.Google Scholar
  103. Tesser, A., and Achee, J. (1994) Aggression, love, conformity and other social psychological catastrophys. Vallacher, R., and Nowak, A. (eds.) Dynamical systems in social psychology. San Diego, CA: Academic PressGoogle Scholar
  104. Thibaut, J.W., and Kelley, H.H. (1959) The social psychology of groups. New York: Wiley.Google Scholar
  105. Vallacher, R.R., Nowak, A., and Kaufman, J. (1994) Intrinsic dynamics of social judgment. Journal of Personality and Social Psychology, 67, pp. 20–34.CrossRefGoogle Scholar
  106. Vallacher, R.R., and Nowak, A. (eds.) (1994) Dynamical systems in social psychology. San Diego, CA: Academic Press.Google Scholar
  107. Vallacher, R., and Nowak, A. (in press) The emergence of dynamical social psychology. Psychological Inquiry, in press.Google Scholar
  108. Weidlich, W. (1991) Physics and social science — the approach of synergetics. Physics Reports, 204, pp. 1–163.CrossRefGoogle Scholar
  109. Weidlich, W., and Haag, G. (1983) Concepts and Models of Quantitative Sociology. Berlin: Springer.CrossRefGoogle Scholar
  110. Weisbuch, G. (1992) Complex systems dynamics, Redwood City: Addison Wesley.Google Scholar
  111. Whicker M.L. and Sigelman, L. (1991) Computer simulation applications: an introduction., Newbury Park: Sage.Google Scholar
  112. Wolfram, S. (ed.) (1986) Theory and applications of cellular automata. Singapore: World Scientific.Google Scholar
  113. Zaslavsky, G.M., and Sagdeev, R.Z. (1988) Vvedenye v nyelinyeynuyu fizyku. Moscow: Nauka.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • Andrzej Nowak
    • 1
  • Maciej Lewenstein
    • 2
  1. 1.Institute for Social StudiesUniversity of WarsawWarszawaPoland
  2. 2.Institute for Theoretical PhysicsPolish Academy of SciencesWarszawaPoland

Personalised recommendations