Finite Geometry, Dirac Groups and the Table of Real Clifford Algebras

Part of the Mathematics and Its Applications book series (MAIA, volume 321)


Associated with the real Clifford algebra Cl(p, q), p + q = n, is the finite Dirac group G(p, q) of order 2n+1. The quotient group V n = G(p, q)/ *#x007B;± 1*#x007D;, viewed additively, is an ndimensional vector space over GF(2) = *#x007B;0, 1*#x007D; which comes equipped with a quadratic form Q and associated alternating bilinear form B. Properties of the finite geometry over GF(2) of V n B, Q — in part familiar, in part less so — are given a rather full description, and a dictionary of translation into their Dirac group counterparts is provided. The knowledge gained is used, in conjunction with facts concerning representations of G(p, q), to give a pleasantly clean derivation of the well-known table of Porteous (1969/1981) of the algebras Cl(p, q). In particular the finite geometry highlights the “antisymmetry” of the table about the column p - q = -1. Several low-dimensional illustrations are given of the application of finite geometry results to Dirac groups. Particular emphasis is laid on certain interesting finite geometry symmetry methods, the latter being given a rather full treatment in the appendices. Finite geometry is also used to study the automorphisms of the Dirac groups, and the splitting of certain exact sequences.

Key words

Finite geometry Clifford algebras Dirac groups Caps on quadrics Conwell heptads Non-polar sets Symmetric groups Split exact sequences 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Artin, E. (1957), ‘Geometric Algebral’. Interscience, New York.Google Scholar
  2. Benn, I.M. & Tucker, R.W. (1987), ‘An Introduction to Spinors and Geometryl’. Adam Hilger, Bristol.Google Scholar
  3. Braden, H.W. (1985), ‘N-dimensional spinors: their properties in terms of finite groupsl’. J. Math. Phys. 26, pp. 613–620.MathSciNetMATHCrossRefGoogle Scholar
  4. Burnside, W. (1911), ‘Theory of Groups of Finite Orderl’. Cambridge University Press, Cambridge.Google Scholar
  5. Cameron, P.J. & Van Lint, J.H. (1991), ‘Designs, Graphs, Codes and their Linksl’. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  6. Cartan, E. (1908) (exposé d’après l’article allemand de E. Study), ‘Nombres Complexesl’, in Molk, J. (red.), ‘Encyclopédie des Sciences Mathématiquesl’, Tome I, vol. 1, Fasc. 4, art. I5, pp. 329–468.Google Scholar
  7. Chisholm, J.S.R. & Farwell, R.S. (1992), ‘Tetrahedral structure of idempotents of the Clifford algebra C3,1l’, in Micali A. et al. (eds.), ‘Clifford Algebras and their Applications in Mathematical Physicsl’, Proceedings of Second Workshop, Montpellier, France, 1989. Kluwer, Dordrecht, pp. 27–32.CrossRefGoogle Scholar
  8. Chisholm, J.S.R. & Farwell, R.S. (1993), ‘Spin gauge theories: principles and predictionsl’, in Brackx, F. et al. (eds.), ‘Clifford Algebras and their Applications in Mathematical Physicsl’, Proceedings of Third Conference, Deinze, Belgium, 1993. Kluwer, Dordrecht, pp. 367–374.CrossRefGoogle Scholar
  9. Conwell G.M. (1910), ‘The 3-space PG(3, 2) and its groupl’. Annals of Math. 11, pp. 60–76.MathSciNetMATHCrossRefGoogle Scholar
  10. Coxeter, H.S.M. (1950), ‘Self-dual configurations and regular graphsl’. Bull. Amer. Math. Soc. 56, pp. 413–455.MathSciNetMATHCrossRefGoogle Scholar
  11. Coxeter, H.S.M. (1958), ‘Twelve points in PG(5, 3) with 95040 self-transformationsl’. Proc. Roy. Soc. A. 247, pp. 279–293.MathSciNetMATHCrossRefGoogle Scholar
  12. Crumeyrolle, A. (1990), ‘Orthogonal and Symplectic Clifford Algebras, Spinor Structuresl’. Kiuwer, Dordrecht.CrossRefGoogle Scholar
  13. Dickson, L.E. (1908), ‘Representations of the General Symmetric Group as Linear Groups in Finite and Infinite Fieldsl’. Trans. Amer. Math. Soc. 9, pp. 121–148.MathSciNetMATHCrossRefGoogle Scholar
  14. Dye, R.H. (1992), ‘Maximal sets of non-polar points of quadrics and symplectic polarities over GF(2)l’. Geom. Ded. 44, pp. 281–293.MathSciNetMATHCrossRefGoogle Scholar
  15. Eckmann, B. (1942), ‘Gruppentheoretischer Beweis des Satzes von Hurwitz-Radon über die Komposition quadratishcher Formenl’. Comment. Math. Helv. 15, pp. 358–366.CrossRefGoogle Scholar
  16. Eddington, A.S. (1936), ‘Relativity Theory of Protons and Electrons.’ Cambridge University Press, Cambridge.Google Scholar
  17. Frenkel, I., Lepowsky, J. & Meurman A. (1988), ‘Vertex Operator Algebras and the Monsterl’. Academic Press, San Diego.Google Scholar
  18. Gordon, N.A., Jarvis, T.M., Maks, J.G. & Shaw, R. (1991), ‘Composition algebras and GF’ (2Y. Mathematics Research Reports (University of Hull), Vol. IV, No. 19. (To be published in J. of Geometry.) Google Scholar
  19. Griess, R.L. (1973), ‘Automorphisms of extra special groups and non vanishing degree 2 cohomologyl’. Pacific. J. Math. 48, pp. 403–422.MathSciNetMATHCrossRefGoogle Scholar
  20. Griess, R.L. (1976), ‘On a subgroup of order 215. I GL(5, 2) 1 in E8(ℂ), the Dempwolff group and Aut(D8 o Dg o D8 )’. J. of Algebra 40, pp. 271–279.MathSciNetMATHCrossRefGoogle Scholar
  21. Hagmark, P.-E. (1980), ‘Construction of some 2n-dimensional algebrasl’. Helsinki University of Technology, Mathematical Report HTKK-MAT-A177.Google Scholar
  22. Hagmark, P.-E. & Lounesto, P. (1986), ‘Walsh functions, Clifford algebras and Cayley-Dickson processl’, in Chisholm, J.S.R. & Common, A.K. (eds), ‘Clifford Algebras and their Applications in Mathematical Physicsl’, Proceedings of First Workshop, Canterbury, England, 1985. Reidel, Dordrecht, pp. 531–540.CrossRefGoogle Scholar
  23. Hall, M (1976), ‘The Theory of Groupsl’. 2nd edn.. Chelsea, New York.Google Scholar
  24. Hirschfeld, J.W.P. (1985), ‘Finite Projective Spaces of Three Dimensionsl’. Clarendon, Oxford.Google Scholar
  25. Hirschfeld, J.W.P. & Thas, J.A. (1991), ‘General Galois Geometriesl’. Clarendon, Oxford.Google Scholar
  26. Jacobson, N. (1980), ‘Basic Algebra IIl’. W.H.Freeman, San Francisco.Google Scholar
  27. Janusz, G. & Rotman, J. (1982), ‘Outer automorphisms of S6’. Amer. Math. Monthly 89, pp. 407–410.MathSciNetCrossRefGoogle Scholar
  28. Lounesto, P. & Wene, G.P. (1987), ‘Idempotent structure of Clifford algebrasl’. Acta Applic. Math. 9, pp. 165–173.MathSciNetMATHCrossRefGoogle Scholar
  29. Porteous, I.R. (1981), ‘Topological Geometryl’. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  30. Quillen, D. (1971), ‘The mod 2 cohomology ring of extra special 2-groups and the spinor groupsl’. Math Ann. 194, pp. 197–212.MathSciNetMATHCrossRefGoogle Scholar
  31. Rotman, J. (1988), Amer. Math. Monthly 95, pp. 779–780, (solution to Advanced Problem 6538).MathSciNetCrossRefGoogle Scholar
  32. Shaw, R. (1983), ‘Linear Algebra and Group Representationsl’, Vol. 2, Academic Press, London.Google Scholar
  33. Shaw, R. (1986), ‘The ten classical types of group representationsl’. J. Phys. A: Math. Gen. 19, pp. 35–44.MATHCrossRefGoogle Scholar
  34. Shaw, R. (1987), ‘Ternary vector cross productsl’. J.Phys. A: Math. Gen. 20, pp. L689–L694.CrossRefGoogle Scholar
  35. Shaw, R. (1988), ‘A new view of d = 7 Clifford algebral’. J.Phys. A: Math Gen. 21, pp. 7–16.MATHCrossRefGoogle Scholar
  36. Shaw, R. (1990), ‘Ternary composition algebras I, IIl’. Proc. R. Soc. Lond. A 431, pp. 1–19, pp. 21–36. ,MATHCrossRefGoogle Scholar
  37. Shaw, R. (1992), ‘Finite geometries and Clifford algebras IIIl’, in Micali A. et al. (eds.), ‘Cliftord Algebras and their Applications in Mathematical Physicsl’, Proceedings of Second Workshop, Montpellier, France, 1989. Kluwer, Dordrecht, pp. 121–132.CrossRefGoogle Scholar
  38. Shaw, R. (1993), ‘Composition algebras, PG(m, 2) and non-split group extensionsl’, in del Ulmo, M.A. et al. (eds.), ‘Group Theoretical Methods in Physicsl’, Proceedings of the XIX International Colloquium, Salamanca, Spain, 1992, Vol. 1, CIEMAT, Madrid, pp. 467–470.Google Scholar
  39. Shaw, R. (1994), ‘Finite geometries, Dirac groups and the table of real Clifford algebrasl’. Mathematics Research Reports (University of Hull), Vol. VII, No. 1.Google Scholar
  40. Sylvester, J.J. (1844), ‘Elementary researches in the analysis of combinatorial aggregationl’. Philosophical Magazine XXIV, pp. 285–296.Google Scholar
  41. Sylvester, J.J. (1861), ‘Notes on the historical origin of the unsymmetric six-valued function of six lettersl’. Philosophical Magazine XXI, pp. 369–377.Google Scholar
  42. Tits, J. (1991), ‘Symmetrie’ in Hilton, P.J. et al. (eds.) ‘Miscellanea Mathematical’. Springer, Berlin, pp. 293–304.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • R. Shaw
    • 1
  1. 1.School of MathematicsUniversity of HullHullEngland

Personalised recommendations