Advertisement

Biquaternionic Formulation of Maxwell’s Equations and their Solutions

  • K. Imaeda
Chapter
Part of the Mathematics and Its Applications book series (MAIA, volume 321)

Abstract

The theory of functions of a real biquaternion variable and the solutions of Maxwell’s equations are recapitulated. A study of the application to diffraction of light by a slit or a hole in a screen is described.

Key words

Maxwell’s equations biquaternions analytic functions diffraction of light 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Jancewicz: 1988, ‘Multivectors and Clifford Algebra in Electrodynamics’, World Scientific, Singapore.zbMATHGoogle Scholar
  2. 2.
    M. Riesz: 1958. ‘Clifford Numbers and Spinors’. University of Maryland, Kluwer, Dordrecht, 1993.zbMATHGoogle Scholar
  3. 3.
    W. E. Baylis: 1993, ‘Electrons, photons, and spinors in the Pauli algebra’ in Z. Oziewicz et. al. (eds.): ‘Spinors, Twistors, Clifford Algebras and Quantum Deformations’, Kluwer, Dordrecht, 97–108.CrossRefGoogle Scholar
  4. 4.
    W. R. Hamilton: 1853. ‘On the geometrical interpretation of some of results obtained by calculation with biquaternions’, Proc. Roy. Irish Acad. 1, 388–390.Google Scholar
  5. 5.
    K. Imaeda: 1957, ‘Contribution to the quaternion formulation of classical electrodynamics’, Bulletin of Dept. Art and Education 8, Yamanashi Unversity, 131–139.Google Scholar
  6. 6.
    K. Imaeda: 1976, ‘A new formulation of classical electrodynamics’, Nuovo Cimento, 32, 138–162.MathSciNetCrossRefGoogle Scholar
  7. 7.
    K. Imaeda: 1950, ‘Linearization of Minkowski space and five-dimensional space’, Prog. Theor. Phys. 5, 133–135.MathSciNetCrossRefGoogle Scholar
  8. 8.
    K. Imaeda: 1951, ‘Study of field equations and spaces by means of hypercomplex numbers’, (in Japanese), Bulletin of Dept. Art and Education, 2, Yamanashi University, 111–118.Google Scholar
  9. 9.
    R. Fueter: 1935, ‘Die Funktionentheorie der Differentialgleichungen Δu = 0 und ΔΔu = 0 mit vier reellen Variablen’, Comm. Math. Helv. 7, 307–330.MathSciNetCrossRefGoogle Scholar
  10. 10.
    R. Fueter: 1936, ‘Über die Analytischen Darstellung der regulären Funktionen einer Quaternionenvariablen’, Comm, Math. Helv. 8, 371–378.MathSciNetCrossRefGoogle Scholar
  11. 11.
    K. Imaeda: 1983, ‘Quaternionic formulation of classical electrodynamics and theory of functions of a biquaternion variable’, Report FPL, Okayama University of Science. (unpublished)Google Scholar
  12. 12.
    Von M. Eichler: 1939, ‘Allgemeine Integration einiger partiellier Differentialgleichungen der Mathematischen Physik durch Quaternionenfunktionen.’ Comm. Math. Helv. Vol. 11, 212–224.CrossRefGoogle Scholar
  13. 13.
    K. Imaeda: 1981, ‘Solutions of Maxwell’s equations by means of regular functions of a biquaternion variable’, Bull. Okayama Univ. Science, 17A, 25–33.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • K. Imaeda
    • 1
  1. 1.OkayamaJapan

Personalised recommendations