Advertisement

Six Lectures on Transseries, Analysable Functions and the Constructive Proof of Dulac’s Conjecture

  • Jean Écalle
Chapter
Part of the NATO ASI Series book series (ASIC, volume 408)

Abstract

The present paper gives a rapid, self-contained introduction to some new resummotion methods, which are noticeable for their high content in structure and revolve logically around the notions of resurgence, compensation and acceleration. Then it presents three applications of decreasing generality: (A) The study of analytic singularities and local objects, mainly singular analytic vector fields and local diffeomorphisms of ℂ v . (B) The construction of the fields of transseries and analysable germs, the latter being essentially the broadest extension of the ring of real-analytic germs whose elements tolerate all common operations, including integration, and yet retain the property of being wholly formalizable, i.e. reducible to a properly structured set of real coefficients. (C) The proof of the non-accumulation of limit-cycles for real-analytic, first-order differential equations.

Each of the topics selected for inclusion in this survey is closely related to the rest, with one red thread running through everything, namely the Analytic Principle, which “posits” that local entities arising naturally out of a local analytic situation can be entirely “formalized”.

Keywords

Critical Time Local Object Cohesive Function Small Denominator Polynomial Vector Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B]
    Bryuno, A.D. (often transliterated as Bruno or Brjuno), Analytical forms of differential equations, I, II, Trudy Mosk. Mat. Ob. 25 (1971), 119–262;zbMATHGoogle Scholar
  2. Bryuno, A.D. (often transliterated as Bruno or Brjuno), Analytical forms of differential equations, I, II, Trudy Mosk. Mat. Ob. 26 (1972), 199–239;zbMATHGoogle Scholar
  3. Bryuno, A.D. English translation in Trans. Mosc. Math. Soc. 25 (1971);Google Scholar
  4. Bryuno, A.D. English translation in Trans. Mosc. Math. Soc. 26 (1972).Google Scholar
  5. [Ch]
    Chicone, C., “Finiteness theorems for limit cycles”, Book review, Bull. Amer. Math. Soc. 28, no. 1 (1993), 123–130.Google Scholar
  6. [Cp]
    Coppel, W.A., A survey of quadratic systems, J. Differential Equations 2 (1966), 293–304.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [Cw]
    Conway, J.H. On Numbers and Games, Academic Press, 1976.Google Scholar
  8. [DBR]
    Du Bois-Reymond, P., Über asymptotische Werthe, infinitäre Approximationen und infinitäre Auflösung von Gleichungen, Math. Ann. 8 (1875), 363–414;MathSciNetzbMATHCrossRefGoogle Scholar
  9. Du Bois-Reymond, P., Über die Paradoxen des Infinitärcalcüls, Math. Ann. 11 (1877), 149–167.MathSciNetCrossRefGoogle Scholar
  10. [Dl]
    Dulac, H., Sur les cycles limites, Bull. Soc. Math. France 51 (1923), 45–188.MathSciNetzbMATHGoogle Scholar
  11. [Dm]
    Dumortier, F., Singularities of Vector Fields, Monograf. Mat. 32, IMPA, Rio de Janeiro 1978.Google Scholar
  12. [DRR]
    Dumortier, F., Roussarie, R., Rousseau, C., Hilbert’s 16th problem for quadratic vector fields, preprint, 1992.Google Scholar
  13. [Dd]
    Douady, A., Disques de Siegel et anneaux de Herman, Séminaire Bourbaki 677 (1986–87).Google Scholar
  14. [E.0]
    Ecalle, J., Théorie des invariants holomorphes (Ph.D. thesis, Orsay) Publ. Math. Orsay (1974). The first part of this thesis appeared, under the title “Théorie itérative: introduction à la théorie des invariants holomorphes” in J. Math. Pures Appl. 54 (1975), 183–258.Google Scholar
  15. [E.00]
    Ecalle, J., Cinq applications des fonctions résurgentes, Prépubl. Math. Orsay (1984), T. 62.Google Scholar
  16. [E.1]
    Écalle, J., Les fonctions résurgentes, Vol. 1, Algèbres de fonctions résurgentes, Publ. Math. Orsay (1981).Google Scholar
  17. [E.2]
    Écalle, J. Les fonctions résurgentes, Vol. 2, Les fonctions résurgentes appliquées à l’itération, Publ. Math. Orsay (1981).Google Scholar
  18. [E.3]
    Écalle, J., Les fonctions résurgentes, Vol. 3, L’équation du pont et la classification analytique des objets locaux, Publ. Math. Orsay (1985).Google Scholar
  19. [E.4]
    Ecalle, J., Finitude des cycles-limites et accélero-sommation de l’application de retour, in: Bifurcations of Planar Vector Fields (J.P. Françoise, R. Roussarie, eds.), Lecture Notes in Math. 1455, Springer-Verlag, Berlin-Heidelberg-New York 1990, 74–159.CrossRefGoogle Scholar
  20. [E.5]
    Ecalle, J., Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Actualités Math., Hermann, Paris 1992.zbMATHGoogle Scholar
  21. [E.6]
    Ecalle, J., The acceleration operators and their applications, in: Proc. Internat. Congr. Math., Kyoto (1990) Vol. 2, Springer-Verlag, Tokyo 1991, 1249–1258.Google Scholar
  22. [E.7]
    Écalle, J., The Bridge Equation and its applications to local geometry, Proc. Internat. Conf. Dynam. Syst., Nagoya (Sept. 1990) (K. Shiraiwa, ed.), Adv. Ser. Dynam. Syst. 9.Google Scholar
  23. [E.8]
    Ecalle, J., Singularités non abordables par la géométrie, Ann. Inst. Fourier (Grenoble) 42 (1992), 73–164.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [E.9]
    Ecalle, J., Weighted products and parametric resurgence, Prépubl. Math. Orsay (1992), No. 92–54;Google Scholar
  25. Ecalle, J., Weighted products and parametric resurgence, Proc. Franco-Japanese Colloq. on Stokes Phenomena (Luminy, Dec. 1990) (Boutet de Montvel, ed.), Lecture Notes in Math., Springer-Verlag.Google Scholar
  26. [E.10]
    Ecalle, J., Compensation of small denominators and ramified linearization of local objects, Prepubl. Math. Orsay (1992), No. 92–53;Google Scholar
  27. Ecalle, J., Compensation of small denominators and ramified linearization of local objects, Astérisque, Proc. Conf. Dynam. Syst. (Rio de Janeiro, IMPA, Jan. 1992 ) ( C. Camacho, ed. )Google Scholar
  28. [E.11]
    Ecalle, J., Cohesive functions and weak accelerations, to appear in J. Analyse Math., Szolem Mandelbrojt Memorial Volume, 1993.Google Scholar
  29. [E.12]
    Ecalle, J., Acceleration Theory and Its Applications,to appear with Hermann Publ., Paris.Google Scholar
  30. [E.13]
    calle, J., Alien Calculus and Its Applications,three volumes in course of completion; scheduled to appear with Cambridge University Press.Google Scholar
  31. [E.14]
    Ecalle, J., Convolution isomorphisms and their applications, to appear in: Proc. Internat. Conf. in Honour of B. Malgrange.Google Scholar
  32. [Ha]
    Hardy, G.H., Orders of Infinity, The Infinitärcalciil of Paul Du Bois-Reymond, first edition 1910, Cambridge University Press; new edition 1971, Hafner Publ. Company, New York.Google Scholar
  33. [Hi]
    Hilbert D., Mathematical problems (M. Newton, transl.), Bull. Amer. Math. Soc. 8 (1902), 437–479.MathSciNetzbMATHCrossRefGoogle Scholar
  34. [Ill]
    Ilyashenko, Yu. S., Limit cycles of polynomial vector fields with non-degenerate singular points on the real plane, Funktsional. Anal. i Prilozhen. 18, No. 3 (1984), 32–42;MathSciNetGoogle Scholar
  35. Ilyashenko, Yu. S., English translation in Functional Anal. Appl. 18 (1984), 199–209.MathSciNetCrossRefGoogle Scholar
  36. [Il2]
    Ilyashenko, Yu. S., Finiteness theorems for limit cycles, English translation in Russian Math. Surveys 45 (1990).Google Scholar
  37. [Il3]
    Ilyashenko, Yu. S., Finiteness for Limit Cycles,Transi. Math. Monographs 94, Amer. Math. Soc., Providence, R.I.Google Scholar
  38. [Ml]
    Malgrange, B., Travaux d’Écalle et de Martinet-Ramis sur les systèmes dynamiques, Séminaire Bourbaki 1981–82, No. 582;Google Scholar
  39. Malgrange, B., Travaux d’Écalle et de Martinet-Ramis sur les systèmes dynamiques, Astérisque 92–93 (1982), 59–73.MathSciNetGoogle Scholar
  40. [M]
    Martinet, J., Normalisation des champs de vecteurs holomorphes, d’après A.D. Bryuno, Séminaire Bourbaki 1980–81, No. 565.Google Scholar
  41. [MR1]
    Martinet, J., and Ramis, J.-P., Problèmes de modules pour des équations différentielles non linéaires du premier ordre, Inst. Hautes Etudes Sci. Publ. Math. 55 (1982), 63–164.MathSciNetzbMATHCrossRefGoogle Scholar
  42. [MR2]
    Martinet, J., and Ramis, J.-P., Classification analytique des équations différentielles non linéaires résonnants du premier ordre, Ann. Sci. École Norm. Sup. 16 (1983), 571–625.MathSciNetzbMATHGoogle Scholar
  43. [Mou]
    Moussu, R., Le problème de la finitude du nombre de cycles limites, d’après R. Bamón et Yu. S. Ilyashenko, Séminaire Bourbaki 1985–86, No. 655;Google Scholar
  44. Moussu, R., Le problème de la finitude du nombre de cycles limites, d’après R. Bamón et Yu. S. Ilyashenko, Astérisque 145–146 (1987), 89–101.MathSciNetGoogle Scholar
  45. [PM]
    Perez-Marco, R., Solution complète au problème de Siegel de linéarisation d’une application holomorphe au voisinage d’un point fixe, d’après J.-C. Yoccoz, Séminaire Bourbaki 1991–92, No. 753, Février 1992.Google Scholar
  46. [P]
    Poincaré, H., Mémoire sur les courbes définies par une équation différentielle, J. Mathématiques 7 (1881), 375–422.Google Scholar
  47. [Re]
    Reyn, J., A bibliography of the qualitative theory of quadratic systems of differentialGoogle Scholar
  48. equations in the plane, TU Delft, Technical Report, 1989, 69–71.Google Scholar
  49. [Rill]
    Riissmann, H., Über die Iteration analytischer Funktionen, J. Math. Mech. 17, (1967), 523–532.MathSciNetGoogle Scholar
  50. [Rü2]
    Rüssmann, H., On the convergence of power series transformations of analytic mappings near a fixed point into a normal form, preprint IHES, Paris 1977 (does not seem to have appeared elsewhere).Google Scholar
  51. [Sei]
    Seidenberg, A., Reduction of singularities of the differential equation Ady Bdx, Amer. J. Math. 90 (1968), 248–269.MathSciNetzbMATHCrossRefGoogle Scholar
  52. [Siel]
    Siegel, C.L., Iteration of analytic functions, Ann. Math. 43 (1942), 607–612.zbMATHCrossRefGoogle Scholar
  53. [Sie2]
    Siegel, C.L., Über die Normalform analytischer Differentialgleichungen in der Nähe einer Gleichgewichtslösung, Nachr. Akad. Wiss. Göttingen Math. Phys. Abt. (1952), 21–30.Google Scholar
  54. [SP]
    Sotomayor, J., and Paterlini, R., Quadratic vector fields with finitely many periodic orbits in: Geometric Dynamics (J. Palis, Jr., ed.), Lecture Notes in Math. 1007, Springer-Verlag, Berlin-Heidelberg-New York 1983, 753–766.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • Jean Écalle
    • 1
  1. 1.Mathématiques, Bâtiment 425Université de Paris-SudOrsay CédexFrance

Personalised recommendations