Skip to main content

Mechanisms of Relative Sea-level Change and the Geophysical Responses to Ice-water Loading

  • Chapter

Abstract

The purpose of this chapter is firstly to provide a discussion of the variety of mechanisms which may cause changes in sea level, particularly those associated with the melting of continental ice sheets. Secondly, detailed consideration will also be given to some examples of what has been learnt about the earth and the operation of its climate system through the analysis of observations of such changes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnett, T.P. (1983a) ‘Possible changes in global sea level and their causes’, Climate Change, 5(1), 15–38.

    Article  Google Scholar 

  • Barnett, T.P. (1983b) ‘Long term changes in dynamic heights’, J. Geophys. Res., 88, 9547

    Article  Google Scholar 

  • Bloom, A.L. (1967) ‘Pleistocene shorelines: A new test of isostasy’, Bull Geol Soc. Am., 78, 1477–93.

    Article  Google Scholar 

  • Bloom, A.L. (1970) ‘Paludal stratigraphy of Truk, Ponape, and Kusaie, Eastern Caroline Islands’, Bull Geol. Soc. Am., 81, 1895–904.

    Article  Google Scholar 

  • Bloom, A.L. (1983) ‘Sea-level and coastal morphology through the Late Wisconsin glacial maximum’, in S.C. Porter (ed.), Late Quaternary Environments of the United States, Vol. 1 — The Late Pleistocene, Longman, London, pp. 215–29.

    Google Scholar 

  • Carter, W.E. and Robertson, D.S. (1986) ‘Earth rotation from VLBI measurements’, in A.J. Anderson and A. Cazanave (eds), Space Geodesy and Geodynamics, Academic Press, London and New York, pp. 85–96.

    Google Scholar 

  • Robertson, D.S., Pyle, T.E. and Diamante, J. (1986) ‘The application of geodetic radio interferometric surveying to the monitoring of sea level’, Geophys. J. Roy. Astron. Soc., 87, 3–13.

    Article  Google Scholar 

  • Clark, J.A., Farrell, W.E. and Peltier, W.R. (1978) ‘Global changes in postglacial sea level: A numerical calculation’, Quat. Res., 9, 265–87

    Article  Google Scholar 

  • Cox, A. and Dalrymple, G.B. (1967) ‘Statistical analysis of geomagnetic reversal data and the precision of potassium-argon dating’, J. Geophys. Res., 72, 2603–14.

    Article  Google Scholar 

  • Csanady, G.T. (1982) Circulation in the Coastal Ocean, Reidel, Dordrecht.

    Google Scholar 

  • Dziewonski, A.M. and Anderson D.L. (1981) ‘Preliminary reference earth model’, Phys. Earth Planet. Int., 25, 297–356.

    Article  Google Scholar 

  • Fairbridge, R.W. (1976) ‘Shellfish-eating pre-ceramic Indians in coastal Brazil’, Science, 191, 353–9.

    Article  Google Scholar 

  • Farrell, W.E. and Clark, J.A. (1976) ‘On postglacial sea level’, Geophys. J. Roy. Astron. Soc., 46, 647–67.

    Google Scholar 

  • Geodynamics Program Office (1983), The NASA Geodynamics Program, an Overview, NASA Technical Paper No. 2147.

    Google Scholar 

  • Geodynamics Program Office (1984), NASA Geodynamics Program: Fifth Annual Report, NASA Technical Memorandum, 87359

    Google Scholar 

  • Gilbert, F. and Dziewonski, A.M. (1975) ‘An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra’, Phil Trans. Roy. Soc. Lond, A, 276, 187–269.

    Article  Google Scholar 

  • Gill, E.D. (1965) ‘Radiocarbon dating of past sea levels in SE Australia’, Abstracts, INQUA VII Congress, Boulder, Col., p. 167.

    Google Scholar 

  • Görnitz, V., Lebedeff, L. and Hansen, J. (1982) ‘Global sea level trend in the past century’. Science, 215, 1611–14.

    Article  Google Scholar 

  • Hansen, J., Johnson, D., Lacis, A., Lebedeff, S., Lee, P., Reid, D. and Russell, G. (1981) ‘Climate impact of increasing atmospheric carbon dioxide’. Science, 213, 957–66.

    Article  Google Scholar 

  • Hays, J.D., Imbrie, J. and Shackleton, N.J. (1976) ‘Variations in the earth’s orbit: Pacemaker of the ice ages’. Science, 194, 1121–32.

    Article  Google Scholar 

  • Hyde, W.T. and Peltier, W.R. (1985). ‘Sensitivity experiments with a model of the ice age cycle: the response to harmonic forcing’, J. Atmos. Sei., (September).

    Google Scholar 

  • Imbrie, J., Van Donk, J. and Kipp, N.G. (1973) ‘Paleoclimatic investigation of a Late Pleistocene Caribbean deep-sea core: Comparison of isotopic and faunal methods’, Quat. Res. (NY, 3,10–38.

    Article  Google Scholar 

  • Imbrie, J., Shackleton, N.J., Pisias, N.G., Morley, J.J., Prell, W.L., Martinson, D.G., Hays, J.D., Mclntyre, A. and Mix, A.C. (1984) ‘The orbital theory of Pleistocene climate: Support from a revised chronology of the marine record’, in A. Berger, J. Imbrie, J. Hays, G. Kukla and B. Saltzman (eds), Milankovitch and Climate, Reidel, Dordrecht, vol. I. pp. 269–305.

    Google Scholar 

  • Jelgersma, S. (1966) ‘Sea level changes during the last 10,000 years’, in Proceedings of the International Symposium on World Climate from 8000 to 0 BX, Royal Meteorological Society, London, pp. 54–71.

    Google Scholar 

  • Lagios, E. and Wyss, M. (1983) ‘Estimates of vertical crustal movements along the coast of Greece, based upon mean sea level data’, PAGEOPH, 121, 869–87.

    Article  Google Scholar 

  • Lowe, J.J. and Walker, M.J.C. (1984) Reconstructing Quaternary Environments, Longman, London.

    Google Scholar 

  • Mareschall, J.-C and Gangi, A.F. (1977) Equilibrium position of phase boundary under horizontally varying surface loads’, Geophys. J. Roy. Astron, Soc., 49, 757–72.

    Article  Google Scholar 

  • Marsh, J.G. and Martin, T.V. (1982) The SEASAT altimeter mean sea surface model’, J. Geophys. Res., 87, 3269–80.

    Article  Google Scholar 

  • Meier, Mark F. (1984) ‘Contribution of small glaciers to global sea level’. Science, 226, 1418–21.

    Article  Google Scholar 

  • Milankovitch, M. (1941) Canon of Insolation and the Ice-Age Problem, K. Serb. Akad. Geogr., Spec. Publ. No. 132, translated by Israel Program for Scientific Translations, Jerusalem, 1976, US Department of Commerce.

    Google Scholar 

  • Münk, W.H. and Revelle, R. (1952) ‘On the geophysical interpretation of irregularities in the rotation of the Earth’, Mon. Not. Roy. Astron. Soc., Geophys. SuppL, 6, 331–47.

    Article  Google Scholar 

  • National Ocean Service (1983) Sea Level Variations for the United States 1855–1980, US Department of Commerce, National Oceanic and Atmospheric Administration, Rockville, Md.

    Google Scholar 

  • Noble, M. and Butman, B. (1979) ‘Low frequency wind induced sea level oscillations along the east coast of North America’, J. Geophys. Res., 84, 3227–36.

    Article  Google Scholar 

  • O’Connell, R.J. (1976) The effects of mantle phase changes on postglacial rebound’, Geophys. Res., 81, 971–4.

    Article  Google Scholar 

  • Peltier, W.R. (1974) The impulse response of a Maxwell Earth’, Rev. Geophys. Space Phys., 72,649–69

    Article  Google Scholar 

  • Peltier, W.R. (1976) ‘Glacio-Isostatic adjustment-IL The inverse problem’, Geophys. J. Roy. Astron. Soc., 46, 669–706.

    Google Scholar 

  • Peltier, W.R. (1980) ‘Mantle convection and viscosity’, in A.M. Dziewonski and E. Boschi (eds). Physics of the Earth’s Interior, North Holland, Amsterdam, pp. 362–431.

    Google Scholar 

  • Peltier, W.R. (1981) ‘Ice age geodynamics’, Ann. Rev. Earth Planet. Sei., 9, 199–225.

    Article  Google Scholar 

  • Peltier, W.R. (1982) ‘Dynamics of the Ice Age Earth’, Adv. Geophys., 24, 1–146.

    Article  Google Scholar 

  • Peltier, W.R. (1983) ‘Constraint on deep mantle viscosity from LAGEOS acceleration data’. Nature, 304, 434–6.

    Article  Google Scholar 

  • Peltier, W.R. (1984a) ‘The rheology of the planetary interior’, Rheology, 28, 665–97.

    Article  Google Scholar 

  • Peltier, W.R. (1984b) ‘The thickness of the continental lithosphere’, J. Geophys. Res., 89, 11,303–16.

    Google Scholar 

  • Peltier, W.R. (1985a) ‘The LAGEOS constraint on deep mantle viscosity: results from a new normal mode method for the inversion of viscoelastic relaxation spectra’, J. Geophys. Res., 90, Bull, 9411–21.

    Article  Google Scholar 

  • Peltier, W.R. (1985b). ‘Mantle convection and viscoelasticity’, Ann. Rev. Fluid. Mech., 17, 561–608.

    Article  Google Scholar 

  • Peltier, W.R. and Andrews, J.T. (1976) ‘Glacial isostatic adjustment I: The forward problem’, Geophys. J. Roy. Astron. Soc., 46, 605–46.

    Google Scholar 

  • Farrell, W.E. and Clark, J.A. (1978) ‘Glacial isostasy and relative sea level: a global finite element model’, Tectonophys., 50, 81–110.

    Article  Google Scholar 

  • Wu, Patrick and Yuen, D.A. (1981) ‘The Viscosities of the planetary mantle’, in F.D. Stacey, A. Nicholas and M.S. Paterson (eds), Anelasticity in the Earth, American Geophysical Union, Washington, DC.

    Google Scholar 

  • Farrell, W.E. and Wu, Patrick (1982) ‘Mantle phase transitions and the free air gravity anomahes over Fennoscandia and Laurentia’, Geophys. Res. Lett., 9, 731–734.

    Article  Google Scholar 

  • Farrell, W.E. and Wu, Patrick (1983). Continental lithospheric thickness and deglaciation induced true polar wander. Geophys. Res. Lett., 10, 181–4.

    Article  Google Scholar 

  • Farrell, W.E.and Hyde, W.T. (1984) ‘A model of the ice age cycle’, in A. Berger, J. Imbrie, J. Hays, G. Kukla and B. Saltzman (eds), Milankovitch and Climate, Reidel, Dordrecht, vol. II, pp. 565–80.

    Google Scholar 

  • Rapp, R.H. (1979) “Geos 3 data processing for the recovery of geoid undulations and gravity anomalies’ Geophys. Res., 84, 3784–92.

    Article  Google Scholar 

  • Roemmich, D. and Wunsch, C. (1984) ‘Apparent changes in the climatic state of the deep North Atlantic Ocean’, Nature, 307, 447–50.

    Article  Google Scholar 

  • Russell, R.J. (ed.) (1961) Tacific Island Terraces: Eustatic?’ Zeit. Geomorph. Suppl, 3.

    Google Scholar 

  • Sabadini, R. and Peltier, W.R. (1981) ‘Pleistocene deglaciation and the earth’s rotation: implications for mantle viscosity’, Geophys. J. Roy. Astron. Soc., 66, 552–78.

    Article  Google Scholar 

  • Schofield, J.C. (1964) Tost-glacial sea levels and isostatic uplift’, NZ J. Geol. Geophys., 7, 359–70.

    Article  Google Scholar 

  • Schutz, E.B., Tapley, B.D. and Shum, C. (1982) ‘Evaluation of the SEASAT altimeter time tag bias’, J. Geophys. Res., 87, 3239–45.

    Article  Google Scholar 

  • Shackleton, N.J. and Opdyke, N.D. (1973) ‘Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28–238: Oxygen isotope temperatures and ice volumes on a 10 to 101 year timescale’, Quat. Res., 3, 39–54.

    Article  Google Scholar 

  • Shackleton, N.J. and Opdyke, N.D. (1976) ‘Oxygen isotope and paleomagnetic stratigraphy of Pacific core V28–239 late Pleistocene to latest Pleistocene’, Mem. Geol. Soc. Am., 145, 449–64.

    Google Scholar 

  • Shepard, P.P. (1963) ‘Thirty-five thousand years of sea level’, in T. Clements (ed.). Essays in Marine Geology, University of Southern California Press, Los Angeles, Calif., pp. 1–10.

    Google Scholar 

  • Stanley, H.R. (1979) ‘The Geos 3 project’, J. Geophys. Res., 84, 3779–83.

    Article  Google Scholar 

  • Thompson, K.R. (1981) ‘Monthly changes of sea level and the circulation of the North Atlantic’, Ocean Modelling, 41, 6–9.

    Google Scholar 

  • Vincent, R.O. and Yumi, S. (1969, 1970) ‘Co-ordinates of the pole (1899–1968), returned to the conventional international origin’, Publ Int. Latitude Observ. Mizusawa, 7, 41–50.

    Google Scholar 

  • Weertman, J. (1978) ‘Creep laws for the mantle of the Earth’, Phil. Trans. Roy. Soc. Lond.,A288, 9–26.

    Google Scholar 

  • Wu, Patrick, and Peltier, W.R. (1983) ‘Glacial isostatic adjustment and the free air gravity anomaly as a constraint on deep mantle viscosity’, Geophys. J. Roy. Astron. Soc., 74, 377–449.

    Google Scholar 

  • Wu, Patrick, and W.R. Peltier (1984) ‘Pleistocene deglaciation and the Earth’s rotation: a new analysis’, Geophys. J. Roy. Astron. Soc., 76, 753–92.

    Article  Google Scholar 

  • Wunsch, C. (1981) ‘An interim relative sea surface for the North Atlantic ocean’. Mar. Geodesy, 5, 103–19.

    Article  Google Scholar 

  • Wunsch, C. and Gaposhkin, E.M. (1980) ‘On using satellite altimetry to determine the general circulation of the oceans with applications to geoid improvement’, Rev. Geophys. Space Phys., 18, 725–45.

    Article  Google Scholar 

  • Wyrtki, K. and Nakahara, S. (1984) Monthly Maps of Sea Level Anomalies in the Pacific 1975–1981, Hawaii Institute of Geophysics Report HIG-84–3.

    Google Scholar 

  • Wyss, M. (1976a). ‘Local sea level changes before and after the Hyuganada, Japan earthquakes of 1961 and 1968’, J. Geophys. Res., 81, 5315–21.

    Article  Google Scholar 

  • Wyss, M. (1976b) ‘Local changes of sea level before large earthquakes in South America’, Bull. Seis. Soc. Am., 66, 903–14.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 R.J.N. Devoy

About this chapter

Cite this chapter

Peltier, W.R. (1987). Mechanisms of Relative Sea-level Change and the Geophysical Responses to Ice-water Loading. In: Devoy, R.J.N. (eds) Sea Surface Studies. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-1146-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-1146-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-1148-3

  • Online ISBN: 978-94-015-1146-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics