Genetics of Salmonella

  • Tetsuo Iino
  • Joshua Lederberg
Part of the Monographiae Biologicae book series (MOBI, volume 13)


The genetics of Salmonella can be traced back to the discoveries and descriptions of several remarkable phenomena of antigenic variation in this genus, namely O-H variation, S-R variation, form variation and phase variation (reviewed by Kauffmann, 1954).


Phase Variation Chromosome Fragment Amino Acid Analogue Antigen Type Somatic Antigen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ambler, R. P. & Rees, M. W., 1959. ε-N-Methyl-lysine in bacterial flagella protein. Nature, Lond. 184, 56–57.CrossRefGoogle Scholar
  2. Ames, B. N., Garry, B. & Herzenberg, L. A., 1960. The genetic control of the enzymes of histidine biosynthesis in Salmonella typhimurium. J. gen. Microbiol., 22, 369–37Google Scholar
  3. Andrews, F. W., 1922. Studies in group-agglutination. I. The Salmonella group and its antigenic structure. J. Path. Bact. 25, 515–521.Google Scholar
  4. Baron, L. S., 1953. Genetic transfer by means of Vi phage lysates. Cold Spring Harbor Symp. quant. Biol. 18, 271–272.CrossRefGoogle Scholar
  5. Baron, L. S., Spilman, W. M. & Carey, W. F. 1959a. Hybridization of Salmonella species by mating with E. coli. Science. 130, 566–567.CrossRefGoogle Scholar
  6. Baron, L. S., Carey, W. F. & Spilman, W. M. 1959b. Characteristics of a high frequency of recombination (Hfr) strain of Salmonella typhosa compatible with Salmonella, Shigella and Escherichia species. Proc. Nat. Acad. Sci. U.S. 45, 1752–1757.CrossRefGoogle Scholar
  7. Baron, L. S. & Falkow, S., 1961. Genetic transfer of episomes from Salmonella typhosa to Vibrio cholerae. Rec. Genet. Soc. Amer. 30, 59.Google Scholar
  8. Baron, L. S., Formal, S. B. & Spilman, W., 1953. Uses of Vi phage lysates in genetic transfer. Proc. Soc. exp. Biol. Med. 83, 292–295.Google Scholar
  9. Beale, G.H. & Wilkinson, J. F., 1961. Antigenic variation in unicellular organisms. Ann. Rev. Microbiol. 15, 263–296.CrossRefGoogle Scholar
  10. Berson, S. A. & Yalow, R. S., 1961. Immunochemical distinction between insulins with identical amino-acid sequences. Nature, Lond. 19, 1392–1393.CrossRefGoogle Scholar
  11. Brinton, C. C. & Baron, L. S., 1960. Transfer of piliation from Escherichia coli to Salmonella typhosa by genetic recombination. Biochim. biophys. Acta42, 298–311.CrossRefGoogle Scholar
  12. Bruner, D. W. & Edwards, P. R., 1941.The demonstration of non-specific components in Salmonella paratyphi A by induced variation. J. Bact. 42, 467–478.Google Scholar
  13. Clark, A. J. & Adelberg, E. A., 1962. Bacterial Conjugation. Ann. Rev. Microbiol. 16, 289–319.CrossRefGoogle Scholar
  14. Demerec, M. & Hartman, P. E., 1959. Complex loci in microorganisms. Ann. Rev. Microbiol. 13, 377–406.CrossRefGoogle Scholar
  15. Edwards, P. R. & Bruner, D. W., 1939. The demonstration of phase variation in Salmonella abortus-equi. J. Bad. 58, 63–72.Google Scholar
  16. Edwards, P. R., Barnes, L. A. & Babcock, M. C., 1950. The natural occurrence of phase 2 of Salmonella paratyphi A. J. Bad. 59, 135–136.Google Scholar
  17. Edwards, P. R., Davis, B. R. & Cherry, W. B., 1955. Transfer of antigens by phage lysates with particular reference to the l. w antigens of Salmonella. J. Bad. 70, 279–284.Google Scholar
  18. Edwards, P. R., Sakazaki, R. & Kato, I., 1962. Natural occurrence of four reversible flagella phases in cultures of Salmonella Mikawashima. J. Bad. 84, 99–103.Google Scholar
  19. Enomoto, M., 1962. Grouping of paralyzed mutants in Salmonella. Ann. Rept. Nat. Inst. Genetics (Japan). 13, 75.Google Scholar
  20. Enomoto, M. & Iino, T., 1962. Purification, chromatography and electrophoresis of Salmonella flagellin. Ann. Rept. Nat. Inst. Genetics. (Japan). 12.Google Scholar
  21. Falkow, S., Marmur, J., Carey, W. F., Spilman, W. M. & Baron, L. S., 1961. Episomic transfer between Salmonella typhosa and Serratia marcescens. Genetics46, 703–706.Google Scholar
  22. Falkow, S., Rownd, R. & Baron, L. S., 1962. Genetic homology between Escherichia coli-K12 and Salmonella. J. Bad. 34, 1300–1312.Google Scholar
  23. Fox, A. S. & Burnett, J. B., 1961. Tyrosinases of diverse thermostabilities and their interconversion in Neurospora crassa. Biochem. biophys. Acta61, 108–120.Google Scholar
  24. Frisch, L. (ed.), 1961. Cellular regulatory mechanisms. Cold Spring Harbor Symp. quant. Biol. 26, pp. 408.Google Scholar
  25. Fukasawa, T. & Nikaido, H., 1961a. Galactose-sensitive mutants of Salmonella II. Bacteriolysis induced by galactose. Biochim. biophys. Acta. 48, 470–483.CrossRefGoogle Scholar
  26. Fukasawa, T. & Nikaido, H., 1961b. Galactose mutants of Salmonella typhimurium. Genetics. 46, 1295–1303.Google Scholar
  27. Furness, G. & Rowley, D., 1956. Transduction of virulence within the species Salm. typhimurium. J. gen. Microbiol. 15, 140–145.Google Scholar
  28. Goldshmidt, E. P. & Landman, O. E., 1962. Transduction by ultraviolet irradiated virulent bacteriophage. J. Bact. 83, 690–691.Google Scholar
  29. Gowen, J. W., 1951. Genetics and disease resistance. Genetics in the 20th Century, (L. C. Dunn ed.). 401–429.Google Scholar
  30. Hirokawa, H. & Iino, T., 1961. H-antigen of heterozygous hybrids between Salmonella abony and Salmonella typhimurium. Ann. Rept. Nat. Inst. Genetics (Japan), 12, 81–2.Google Scholar
  31. Horiuchi, T. & Novick, A., 1961. A thermolabile repression system. Cold Spring Harbor Symp. quant. Biol. 26, 247–248.CrossRefGoogle Scholar
  32. Huang, R. C. & Bonner, J., 1962. Histone, a suppressor of chromosomal RNA synthesis. Proc. Nat. Acad. Sci., U.S. 48, 1217–1222.CrossRefGoogle Scholar
  33. Iino, T., 1958a. Immunogenetics of Salmonella. Thesis. University of Wisconsin.Google Scholar
  34. Iino, T., 1958b. Cistron test of motility genes in Salmonella. Ann. Rept. Nat. Inst. Genetics (Japan). 9, 96.Google Scholar
  35. Iino, T., 1959. Subunits of H1 gene in Salmonella. Ann. Rept. Nat. Inst. Genetics (Japan)10, 111–113.Google Scholar
  36. Iino, T., 1960. Transductions between curly flagellar mutants in Salmonella. Ann. Rept. Nat. Inst. Genetics (Japan)11, 73–74.Google Scholar
  37. Iino, T., 1961a. Genetic analysis of O-H variation in Salmonella. Japan. J. Genet. 36, 268–275.CrossRefGoogle Scholar
  38. Iino, T., 1961b. A stabilizer of antigenic phase in Salmonella abortus-equi. Genetics46, 1465–1469.Google Scholar
  39. Iino, T., 1961c. Anomalous homology of flagellar phases in Salmonella. Genetics46, 1471–1474.Google Scholar
  40. Iino, T., 1962a. Curly flagellar mutants in Salmonella. J. gen. Microbiol. 27, 167–175.Google Scholar
  41. Iino, T., 1962b. Phase specific regulation of the flagellin genes (H1 and H2) in Salmonella. Ann. Rept. Nat. Inst. Genetics (Japan)13, 72–73.Google Scholar
  42. Iino, T. & Enomoto, M., 1962. Further studies on the non-flagellated mutants of Salmonella. Ann. Rept. Nat. Inst. Genetics (Japan)13, 73–74.Google Scholar
  43. Iino, T. & Haruna, I., 1960. A non-flagellated mutant which produces flagellar protein in Salmonella. Ann. Rept. Nat. Inst. Genetics (Japan)11, 74.Google Scholar
  44. Iino, T. & Mitani, M., 1962. Effect of phenol on the flagellation of Salmonella cell. Ann. Rept. Nat. Inst. Genetics (Japan)13, 74.Google Scholar
  45. Iseki, S. & Kashiwagi, K., 1957. Induction of somatic antigen 1 by bacteriophage in Salmonella B group. Proc. Japan Acad. 33, 481–485.Google Scholar
  46. Iseki, S. & Sakai, T., 1953. Artificial transformation of O antigens in Salmonella E group. II. Antigen-transforming factor in bacilli of subgroup E2. Proc. Jap. Acad. 29, 127–131.Google Scholar
  47. Ingram, V. M., 1957. Gene mutaton in human hemoglobin: the chemical differences between normal and sickle-cell hemoglobin. Nature, Lond. 180, 326–328.CrossRefGoogle Scholar
  48. Jacob, F. & Monod, J., 1961. On the regulation of gene activity. Cold Spring Harbor Symp. quant. Biol. 26, 193–211.CrossRefGoogle Scholar
  49. Jacob, F. & Wollman, E. L., 1961. Sexuality and the genetics of bacteria. Academic Press, New York & London. pp. 374.Google Scholar
  50. Joys, T. M., 1961. Mutation in flagellar antigen i of Salmonella typhimurium. Thesis, London University.Google Scholar
  51. Karush, F., 1960. Role of disulfide pairing in the biosynthesis of antibody. Science132, 1494.Google Scholar
  52. Kauffmann, F., 1940. Zur Serologie des I-antigens in der Salmonella Gruppe. Acta path. microbiol. scand. 17, 135–144.CrossRefGoogle Scholar
  53. Kauffmann, F., 1954. Enterobacteriaceae. 2nd ed. E. Munksgroard, Copenhagen.Google Scholar
  54. Kauffmann, F., 1964. Das Kauffmann-White Scheme, in“The World Problem of Salmonellosis”. Dr. W. Junk-Publishers, The Hague. p. 21–66.Google Scholar
  55. Karridge, D., 1959. The effect of amino acids analogues on the synthesis of bacterial flagella. Biochim. biophys. Acta31, 579–581.CrossRefGoogle Scholar
  56. Kerridge, D., 1960. The effect of inhibitors on the formation of flagella by Salmonella typhimurium. J. gen. Microbiol. 33, 519–538.Google Scholar
  57. Kerridge, D., Horne, R. W. & Glauert, A. M., 1962. Structural components of flagella from Salmonella typhimurium. J. Mol. Biol. 4, 227–238.CrossRefGoogle Scholar
  58. Kobayashi, T., Rinker, J. N. & Koffler, H., 1959. Purification and chemical properties of flagellin. Arch. Biochem. Biophys. 84, 342–361.CrossRefGoogle Scholar
  59. Lederberg, J., 1950. Isolation and characterization of biochemical mutants of bacteria. Methods in med. Res. 3, 5–22.Google Scholar
  60. Lederberg, J., 1956. Linear inheritance in transductional clones. Genetics41, 845–871.Google Scholar
  61. Lederberg, J., 1961. A duplication of the H1 (flagellar antigen) locus in Salmonella. Genetics46, 1475–1481.Google Scholar
  62. Lederberg, J. & Edwards, P. R., 1953. Serotypic recombination in Salmonella. J. Immunol. 71, 232–240.Google Scholar
  63. Lederberg, J. & Iino, T., 1956. Phase variation in Salmonella. Genetics41, 744757.Google Scholar
  64. Leifson, E. & Hugh, R., 1953. Variation in shape and arrangement of bacterial flagella. J. Bact. 65, 263–271.CrossRefGoogle Scholar
  65. Le Minor, L., Le Minor, S. & Nicolle, P., 1961. Conversion de cultures de Salmonella schwarzengrund et Salmonella bredeney, dépourvues de l’antigène 27, en cultures 27 positives par la lysogénisation. Ann. Inst. Pasteur 101, 571–589.Google Scholar
  66. Lewis, E. B., 1950. The phenomenon of position effect. Advances in Genetics3, 73–115.CrossRefGoogle Scholar
  67. Luria, S. E., 1962. Bacteriophage genes and bacterial functions. Science136, 685–692.CrossRefGoogle Scholar
  68. Margolin, P. & Mukai, F. H., 1961. The pattern of mutagen-induced back mutations in Salmonella typhimurium. Z. Vererbungsl., 92, 330–335.CrossRefGoogle Scholar
  69. Mäkelä, P. H., Lederberg, J. & Lederberg, E. M., 1962. Patterns of sexual recombination in enteric bacteria. Genetics47, 1427–1439.Google Scholar
  70. Marmur, J., Falkow, S. & Mandel, M., 1963. New approaches to bacterial taxonomy. Ann. Rev. Microbiol. 17, 329–372.CrossRefGoogle Scholar
  71. Meynell, E. W., 1961. A phage, øx, which attacks motile bacteria. J. gen. Microbiol. 25, 253–290.Google Scholar
  72. Miyake T., 1960. Mutator factor in Salmonella typhimurium. Genetics45, 11–14Google Scholar
  73. Miyake, T., 1962. Exchange of genetic material between Salmonella typhimurium and Escherichia coli K-12. Genetics47, 1043–1052.Google Scholar
  74. Miyake, T. & Demerec, M., 1959. Salmonella-Escherichia hybrids. Nature, Lond. 183, 1586.CrossRefGoogle Scholar
  75. Morse, M. L., Lederberg, E. M. & Lederberg, J., 1956. Transductional heterogenotes in Escherichia coli. Genetics41, 758–779.Google Scholar
  76. Ørskov, S. & Ørskov, E., 1960. An antigen termed f+ occurring in F+ E. coli strains. Acta path, microbiol. scand. 48, 37–46.CrossRefGoogle Scholar
  77. Ørskov, F., Ørskov, I. & Kauffmann, F., 1961. The fertility of Salmonella strains determined in mating experiments with Escherichia strains. Acta path. microbiol. scand. 51, 291–296.CrossRefGoogle Scholar
  78. Ozeki, H., 1956. Abortive transduction in purine-requiring mutants of Salmonella typhimurium. Genetic Studies with Bacteria. Carnegie Inst. Wash. Publ. 612, 97–106.Google Scholar
  79. Ozeki, H., 1959. Chromosome fragments participating in transduction in Salmonella typhimurium. Genetics 44, 454–470.Google Scholar
  80. Ozeki, H. & Howarth, S., 1961. Colicine factors as fertility factors in bacteria. Nature, Bond., 190, 986–989.CrossRefGoogle Scholar
  81. Page, L. A., Groodlow, R. J. & Brawn, K., 1951. The effects of threonine of population changes and virulence of Salmonella typhimurium. J. Bad. 62, 639–647.Google Scholar
  82. Pardee, A. B., Jacob, F. & Monod, J., 1959. The genetic control and cytoplasmic expression of“inducibility” in the synthesis of ß-galactosidase by E. coli. J. Mol. Biol. 1, 165–178.CrossRefGoogle Scholar
  83. Richmond, M. H., 1962. The effect of amino acid analogues on growth and protein synthesis in microorganisms. Bact. Rev. 26, 398–420.Google Scholar
  84. Rudner, R., 1961a. Mutation as an error in base pairing. I. The mutagenicity of base analogues and their incorporation into the DNA of Salmonella typhimurium. Z. Vererbungsl. 92, 336–360.CrossRefGoogle Scholar
  85. Rudner, R., 1961b. Mutation as an error in base pairing. II. Kinetics of 5-bromodeoxyuridine and 2-aminopurine-induced mutagenesis. Z. Vererbungsl. 92, 361–379.CrossRefGoogle Scholar
  86. Sakai, T. & Iseki, S., 1954. Transduction of flagella antigen in Salmonella E. Group. Geumma J. med. Sci. 3, 195–199.Google Scholar
  87. Sasaki, I., 1961. Chi-phage resistance of the Salmonella serotypes having g-antigen. Ann. Rept. Nat. Inst. Genetics. (Japan)12, 82–83.Google Scholar
  88. Smith, S. M. & Stocker, B. A. D., 1962. Colicinogeny and recombination. Brit. med. Bull. 18, 46–51.Google Scholar
  89. Sneath, P. H. A. & Lederberg, J., 1961. Inhibition by periolate mating in Escherichia coli K. 12. Proc. Nat. Acad. Sci., U.S. 47, 86.CrossRefGoogle Scholar
  90. Spicer, C. C. & Datta, N., 1959. Reversion of transduced antigenic characters in Salmonella typhimurium. J. gen. Microbiol. 20, 136–143.Google Scholar
  91. Starlinger, P., 1958. Über einen Defect des transduzierenden Salmonella-Phagen. Z. Naturforsch. 136, 489–493.Google Scholar
  92. Staub, A. M. & Raynaud, M., 1964. Connaissances actuelles sur la nature chimique des antigènes présents dans les Salmonella, in“The World Problem of Salmonellosis”. Dr. W. Junk Publishers, The Hague, p. 143–170.Google Scholar
  93. Stocker, B. A. D., 1949. Measurement of rate of mutation of flageller antigenic phase in Salmonella typhimurium. J. Hyg. 47, 308–413.CrossRefGoogle Scholar
  94. Stocker, B. A. D., 1956a. Abortive transduction of motility in Salmonella, a non-replicated gene transmitted through many generations to single descendant. J. gen. Microbiol. 15, 575–598.Google Scholar
  95. Stocker, B. A. D., 1956b. Bacterial flagella: morphology, constitution and inheritance. Symp. Soc. gen. Microbiol. 6, 19–40.Google Scholar
  96. Stocker, B. A. D., Staub, A. M., Tinelli, R. & Kopacka, B., 1960. Étude immunochimique sur les Salmonella. VI. Étude de l’antigène 1 présent sur deux Salmonella B et E4. Ann. Inst. Pasteur98, 505–523.Google Scholar
  97. Stocker, A. D., Zinder, N. D. & Lederberg, J., 1953. Transduction of flagellar characters in Salmonella. J. gen. Microbiol. 9, 410–433.Google Scholar
  98. Terada, M., Tomii, T. & Kurosaka, K., 1956. A doubly lysogenic strain of 5. typhimurium. Virus6, 274–281.CrossRefGoogle Scholar
  99. Uetake, H., Luria, S. E. & Burrous, J. W., 1958. Conversion of somatic antigens in Salmonella by phage infection leading to lysis or lysogeny. Virology5, 68–91.CrossRefGoogle Scholar
  100. Uchida, T., Robbins, P. W. & Luria, S. E., 1963. Biochemistry (in press).Google Scholar
  101. Uetake, H. & Hagiwara, S., 1960. Somatic antigen 15 as a precursor of antigen 34 in Salmonella. Nature, Lond., 186, 261–262.CrossRefGoogle Scholar
  102. Uetake, H. & Uchida, T., 1959. Mutants of Salmonella phage 15 with abnormal conversion properties. Virology9, 495–505.CrossRefGoogle Scholar
  103. Velaudapillai, T., 1960. Transduction in vivo. Z. f. Hyg. 146, 470–480.CrossRefGoogle Scholar
  104. Watanabe, T., 1960. Transductional studies of thiamine and nicotinic acid requiring streptomycin resistant mutants of Salmonella typhi-murium. J. gen. Microbiol. 22, 102–112.Google Scholar
  105. Watanabe, T., 1963, Infective heredity of multiple drug resistance in bacteria. Bact. Rev. 27, 87–115.Google Scholar
  106. Weibull, C., 1950. Investigations on bacterial flagella. Acta chem. scand. 4, 268–276.CrossRefGoogle Scholar
  107. Weiner, L. M. & Swanson, R. E., 1960. Chloramphenicol-resistant strains of Salmonella typhosa. J. Bact. 79, 863–868.Google Scholar
  108. Yanofsky, C., Helinski, D. R. & Maling, B.D., 1961. The effects of mutation on the composition and properties of the A protein of Escherichia coli tryptophan synthetase. Cold Spring Harbor Symp. quant. Biol. 26, 11–24.CrossRefGoogle Scholar
  109. Zelle, M., 1942. Genetic constitution of host and pathogen in mouse typhoid. J. infect. Dis. 71, 131–152.CrossRefGoogle Scholar
  110. Zinder, N. D., 1955. Bacterial transduction. J. Cell. comp. Physiol. 45 (Suppl. 2), 23–49.CrossRefGoogle Scholar
  111. Zinder, N. D., 1960. Hybrids of Escherichia and Salmonella. Science131, 813–815.CrossRefGoogle Scholar
  112. Zinder, N. D. & Lederberg, J., 1952. Genetic exchange in Salmonella. J. Bact. 64, 679–699.CrossRefGoogle Scholar

Copyright information

© Uitgeverij Dr. W. Junk, Den Haag 1964

Authors and Affiliations

  • Tetsuo Iino
    • 1
  • Joshua Lederberg
    • 2
  1. 1.Department of Microbial GeneticsNational Institute of GeneticsMisima, Shizuoka-kenJapan
  2. 2.Department of Genetics, School of MedicineStanford UniversityPalo AltoUSA

Personalised recommendations