Advertisement

Polyamines in Normal and Neoplastic Growth of Mammary Gland

  • Takami Oka
  • John W. Perry
  • Toshiyuki Takemoto
  • Tadashi Sakai
  • Nobuyuki Terada
  • Hideo Inoue

Abstract

The diamine putrescine and the polyamines spermidine and spermine are small aliphatic nitrogenous bases which are present in all mammalian cells. The structures of these polycations are presented below:

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atkins JF, Lewis JB, Anderson CW, Gesteland RF. Enhanced differential synthesis of proteins in a mammalian cell-free system by addition of polyamines. J Biol Chem 250: 5688–5695, 1975Google Scholar
  2. 2.
    Bolander FF, Topper YJ. Relationships between spermidine, glucocorticoid and milk proteins in different mammalian species. Biochem Biophs Res Commun 90: 1131–1135, 1979.CrossRefGoogle Scholar
  3. 3.
    Cohn MS, Tabor CW, Tabor H. Identification of pyruvyl residue in S-adenosylmethionine decarboxylase from Saccharamyces cervisiae. J Biol Chem 252: 8212–8216, 1977Google Scholar
  4. 4.
    Demetriou AA, Cohn MS, Tabor CW, Tabor H. Identification of pyruvate in S-adenosylmethionine decarboxylase from rat liver. J Biol Chem 253: 1684–1686, 1978Google Scholar
  5. 5.
    Hannonen P, Raina A, Janne J. Polyamine synthesis in the regenerating liver: stimulation of S-adenosylmethionine decarboxylase and spermidine and spermine synthases after partial hepatectomy. Biochim Biophys Acta 273: 84–90, 1972.CrossRefPubMedGoogle Scholar
  6. 6.
    Hannonen P. Enzymic decarboxylation of S-adenosyl-L-methionine in rat liver: possible interaction of putrescine with prosthetic group. Acta Chemica Scandinavica B 29: 295–299, 1975CrossRefGoogle Scholar
  7. 7.
    Harik SI, Hollenberg MD, Snyder SH. a-Hydrazino-ornithine blocks net synthesis of putrescine but not of RNA and DNA. Nature 249: 250–251, 1974CrossRefPubMedGoogle Scholar
  8. 8.
    Holtta E, Pohjanpelto P, Janne J. Dissociation of the early anti-proliferative action of methylglyoxal bis(guanylhydrazone) from polyamine depletion. FEES Letter 97: 9–13, 1979CrossRefPubMedGoogle Scholar
  9. 9.
    Hunter AR, Farrell PJ, Jackson RJ, Hunt T. The role of polyamine in cell-free protein synthesis in the wheat germ system. Eur J Biochem 75: 149–157, 1977.CrossRefPubMedGoogle Scholar
  10. 10.
    Igarashi K, Yabuki M, Yoshioka Y, Eguchi K, Hirose S. Mechanism of stimulation of polyphenylalanine synthesis by spermidine. Biochem Biophys Res Commun 75: 163–171, 1977.CrossRefPubMedGoogle Scholar
  11. 11.
    Inoue H, Kato Y, Takigawa M, Adachi K, Takeda Y. Effect of DL-ahydrazino-aminovaleric acid, an inhibitor of ornithine decarboxylase, on polyamine metabolism in isoproterenol-stimulated mouse parotid glands. J Biochem (Tokyo) 77: 879–893, 1975.CrossRefGoogle Scholar
  12. 12.
    Inoue H, Oka T. The effect of inhibitors of ornithine decarboxylase on DNA synthesis in mouse mammary gland in culture. J Biol Chem 255: 3308–3312, 1980.PubMedGoogle Scholar
  13. 13.
    Kano K, Oka T. Polyamine transport in mouse mammary gland. General properties and hormonal regulation. j Biol Chem 251: 2795–2800 1976PubMedGoogle Scholar
  14. 14.
    Mamont PS, Bohlen J, Milann P, Bey P, Schuber F, Tardiff C. a-Methyl ornithine, a potent competitive inhibitor of ornithine decarboxylase, blocks proliferation of rat hepatoma cells in culture. Proc Natl Acad Sci USA 73: 1626–1630, 1976.CrossRefPubMedGoogle Scholar
  15. 15.
    Nagamatsu Y, Oka T. Mouse a-lactalbumin; purification, characterization and the antibody formation. Biochem J 185: 227–237, 1980.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Newton NE, Abdel-Monen MM. Inhibitors of polyamine biosynthesis. Effect of a-methyl-ornithine and methylglyoxal Bis(guanylhydrazone) on growth and polyamine content of L1210 leukemic cells of mice. J Med Chem 20: 249–253, 1977.CrossRefPubMedGoogle Scholar
  17. 17.
    Oka T. The role of spermidine in hormone-dependent differentiation of mammary gland in vitro Science 184: 78–80, 1974.Google Scholar
  18. 18.
    Oka T, Topper YJ. Hormone-dependent accumulation of rough endoplasmic reticulum in mouse mammary epithelial cells in vitro. J Biol Chem 246: 7701–7707, 1971.PubMedGoogle Scholar
  19. 19.
    Oka T, Perry JW. Studies on the function of glucocorticoid in mouse mammary cell differentiation in vitro stimulation of glucose-6phosphate dehydrogenase. J Biol Chem 249: 3586–3591, 1974AGoogle Scholar
  20. 20.
    Oka T, Perry JW. Spermidine as a possible mediator of glucocorticold effect on milk protein synthesis in mouse mammary epithelium in vitro. J Biol Chem 249: 7647–7652, 1974.Google Scholar
  21. 21.
    Oka T, Perry JW. Arginase affects lactogenesis through its influence on the biosynthesis of spermidine. Nature 250: 660–661, 1974.CrossRefPubMedGoogle Scholar
  22. 22.
    Oka T, Perry JW. Studies on regulatory factors of ornithine decar.boxylase activity during development of mouse mammary epithelium in vitro. J Biol Chem 251: 1738–1744, 1976Google Scholar
  23. 23.
    Oka T, Perry JW. Glucocorticoid stimulation of choline kinase activity during the development of mouse mammary gland. Devel Biol 68: 311–318, 1979CrossRefGoogle Scholar
  24. 24.
    Oka T, Perry JW, Kano K. Hormonal regulation of spermidine synthase during the development of mouse mammary epithelium in vitro. Biochem Biophys Res Commun 79: 979–986, 1977.PubMedGoogle Scholar
  25. 25.
    Oka T, Sakai T, Lundren DW, Perry JW. Polyamines in growth and development of mammary gland. pp 301–323 in Hormones, Receptors and Breast Cancer ed WL McGuire. Raven Press, New York 1978.Google Scholar
  26. 26.
    Ono M, Oka T. a-Lactalbumin-casein induction in virgin mouse mammary explants: dose-dependent differential action of cortisol. Science 207: 1367–1369, 1980.CrossRefPubMedGoogle Scholar
  27. 27.
    Ono M, Oka T. The differential actions of cortisol on the accumulation of a-lactalbumin and casein in midpregnant mouse mammary gland in culture. Cell 19: 473–480, 1980.CrossRefPubMedGoogle Scholar
  28. 28.
    Ono M, Perry JW, Oka T. The concentration-dependent differential effects of cortisol on the synthesis of a-lactalbumin and casein in cultured mouse mammary gland explants: The importance of prolactin concentration. In Vitro 17: 121–128, 1981.Google Scholar
  29. 29.
    Perry JW, Oka T. Regulation of ornithine decarboxylase in cultured mouse mammary gland by the osmolarity in the cellular enviroment. Biochim Biophys Acta 629: 24–35, 1980.CrossRefPubMedGoogle Scholar
  30. 30.
    Pegg AE. Purification of rat liver S-adenosyl-L-methionine decarboxylase. Biochem J 141: 581–583, 1974.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Poso H, Sinervirta R, Janne J. S-adenosyl-L-methionine from baker’s yeast. Biochem J 151: 67–73, 1975.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rillema JA, Linebaugh BE, Mulder JA. Regulation of casein synthesis by polyamines in mammary gland explants of mice. Endocrinology 100: 529–536, 1977.CrossRefPubMedGoogle Scholar
  33. 33.
    Russell DH, McVicker T. Polyamine biogenesis in the rat mammary gland during pregancy and lactation. Biochem J 130: 71–76, 1972.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sakai T, Ludgren DW, Oka T. Polyamine biosynthesis and DNA synthesis in cultured mammary gland explants from virgin mice. J Cell Physiol 95: 259–268, 1978.CrossRefPubMedGoogle Scholar
  35. 35.
    Sakai T, Hori C, Kano K, Oka T. Purification and characterization of S-adenosyl-L-methionine decarboxylase from mouse mammary gland and liver. Biochemistry 18: 5541–5548, 1979.CrossRefPubMedGoogle Scholar
  36. 36.
    Sakai T, Perry JW, Hori C, Oka T. Putrescine and the regulation of S-adenosyl-L-methionine decarboxylase in cultured mouse mammary gland. Biochim Biophys Acta 614: 577–582, 1980.CrossRefPubMedGoogle Scholar
  37. 37.
    Salden M, Bloemendal H. Polyamine can replace the dialyzable component from crude reticulocyte intiation factors. Biochem Biophys Res Commun 68: 157–161, 1976.CrossRefPubMedGoogle Scholar
  38. 38.
    Seidenfeld J, Marton LJ. Depletion of intracellular putrescine and spermidine by a-difluoromethylornithine does not inhibit proliferation of 9L rat brain tumor cells. Biochem Biophys Res Commun 86: 1192–1198, 1979.CrossRefPubMedGoogle Scholar
  39. 39.
    Stockdale FE, Topper YJ. The role of DNA synthesis and mitosis in hormone-dependent differentiation. Proc Natl Acad Sci USA 56: 1283–1289, 1966.CrossRefPubMedGoogle Scholar
  40. 40.
    Takemoto T, Nagamatsu Y, Oka, T. Casein and a-lactalbumin mRNAs during the development of mouse mammary gland: isolation, partial purification and translation in a cell-free system. Develop Biol 78: 247–257, 1980.CrossRefPubMedGoogle Scholar
  41. 41.
    Topper YJ, Oka T. Some aspects of mammary gland development in the mature mouse. pp 327–348 in Lactation I, eds CL Larson, VR Smith, Academic Press, New York, 1974.Google Scholar
  42. 42.
    Williams-Ashman HG, Schenone A. Methylglyoxal Bis(guanylhydrazone) as a potent inhibitor of mammalian and yeast S-adenosylmethionine decarboxylases. Biochem Biophys Res Commun 46: 288–295, 1972.CrossRefPubMedGoogle Scholar
  43. 43.
    Yip MCM, Knox WE. Function of arginase in lactating mammary gland. Biochem J 127: 893–899, 1972.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Eden Press Inc. 1982

Authors and Affiliations

  • Takami Oka
  • John W. Perry
  • Toshiyuki Takemoto
  • Tadashi Sakai
  • Nobuyuki Terada
  • Hideo Inoue

There are no affiliations available

Personalised recommendations