Activity, Field Efficacy, and Use of Bacillus thuringiensis israelensis against Mosquitoes

  • Mir S. Mulla

Abstract

In recent years, the use of synthetic organophosphate insecticides for the control of mosquito larvae has been on the decline in California (Mulla 1976) and elsewhere. This drastic decline is primarily due to the development of resistance in mosquito larvae, mammalian toxicity, environmental considerations, and the use of biological control agents such as larvivorous fish and Bacillus thuringiensis subsp. israelensis (B. t i.). In the past decade, research on the development and use of biological control agents in vector control programs has been greatly stimulated and expanded thanks to the efforts of the United Nations Development Programme/World Bank/World Health Organization Special Program for Research and Training in Tropical Diseases (TDR). This agency has been involved in providing extramural funds for basic and applied research and coordinating research activities in the area of biological control of vectors. The Scientific Working Group and the Steering Committee on Biological Control of Vectors were established in 1976 to provide technical evaluation and to foster current and future direction for relevant research in this area. These bodies have been instrumental in promoting research on the development and wide use of new and currently available biological control agents for the management and suppression of disease vectors as well as pest species affecting the quality of life and well-being of millions of people around the world.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizawa, KL, and Ohba, M. 1985. Screening of effective Bacillus thuringiensis isolates other than subspecies israelensis for mosquito and blackfly control. Integrated mosquito control methodologies, ed. M. Laird and J. W. Miles, 2: 199–212. San Diego: Academic Press.Google Scholar
  2. Ali, A. 1981. Bacillus thuringiensis serovar israelensis against chironomids and some non-target aquatic invertebrates. J. Invertebr. Pathol 38: 264–272.CrossRefGoogle Scholar
  3. Ali, A.; Sauerman, D. M.; and Nayar, J. K. 1984. Pathogenecity of industrial formulations of Bacillus thuringiensis serovar israelensis to larvae of some Culicine mosquitoes in the laboratory. Fla Entomol 67: 193–197.CrossRefGoogle Scholar
  4. Aly, C. 1985. Germination of Bacillus thuringiensis var. israelensis spores in the gut of Aedes aegypti larvae (Diptera:Culicidae). J. Invertebr. Pathol 45: 1–8.PubMedCrossRefGoogle Scholar
  5. Aly, C., and Mulla, M. S. 1986. Orientation and ingestion rates of Anopheles albimanus in response to floating particles. Entomol Exp. Appl 42:83–90.CrossRefGoogle Scholar
  6. Aly, C; Mulla, M. S.; and Federici, B. A. 1985. Sporulation and crystal production by Bacillus thuringiensis var. israelensis in cadavers of mosquito larvae (Diptera:Culicidae). J. Invertebr. Pathol 46:251–258.CrossRefGoogle Scholar
  7. Aly, C; Mulla, M. S.; Schnetter W.; and Xu, Bo-Zhao. 1987. Floating bait formulations increase effectiveness of Bacillus thuringiensis var. israelensis against Anopheles larvae. J. Amer. Mosquito Control Assoc 3: 583–588.Google Scholar
  8. Aly, C.; Mulla, M. S.; Xu, Bo-Zhao; and Schnetter, W. 1988. Rate of ingestion by mosquito larvae (Diptera:Culicidae) as a factor in the effectiveness of a bacterial stomach toxin. J. Med Entomol 25: 191–196.PubMedGoogle Scholar
  9. Arias, J., and Mulla, M. S. 1975. Postemergence effects of two insect growth regulators on the mosquito Culex tarsalis (Diptera: Culicidae). J. Med Entomol 12: 317–322.PubMedGoogle Scholar
  10. Barjac, H. de. 1978. Une nouvelle variété de Bacillus thuringiensis très toxique pour les moustiques: B. thuringiensis var. israelensis sérotype 14. C.R. Acad Sci (Paris) 286D: 797–800.Google Scholar
  11. Becker, N., and Ludwig, H. W. 1983. Mosquito control in West Germany. Bull Soc Vector Ecol 8: 85–93.Google Scholar
  12. Brazner, J. C, and Anderson, R. L 1986. Ingestion and adsorption of Bacillus thuringiensis subsp. israelensis by Gammarus lacustris in the laboratory. Appl Environ Microbiol 52: 1386–1390.PubMedGoogle Scholar
  13. Chapman, H. C. 1974. Biological control of mosquito larvae. Ann. Rev. Entomol 19: 33–59.CrossRefGoogle Scholar
  14. Cheung, P.Y.IC, and Hammock, B. D. 1985. Micro-lipid-droplet encapsulation of Bacillus thuringiensis subsp. israelensis δ-endotoxin for control of mosquito larvae. Appl. Environ Microbiol 50 (4): 984–988.PubMedGoogle Scholar
  15. Christie, M. 1958. Prédation on larvae of Anopheles gambiae Giles. Trop. Med Hyg 1958 (July): 168–176.Google Scholar
  16. CMVCA. 1984. California Mosquito and Vector Control Association, Inc., Sacramento, California. Year Book Google Scholar
  17. ———1985. California Mosquito and Vector Control Association, Inc., Sacramento, California. Year Book Google Scholar
  18. ———1986. California Mosquito and Vector Control Association, Inc., Sacramento, California. Year Book.Google Scholar
  19. Dame, D.; Savage, K.; Meisch, M.; and Oldacre, S. 1981. Assessment of industrial formulations of Bacillus thuringiensis var. israelensis. Mosq. News 41: 540–546.Google Scholar
  20. Davidson, E. W. 1982. Bacteria and the control of arthropod vectors of human and animal diseases. In Microbial control and viral pesticides, ed. E. Kurstak, 289–315. New York: Marcel Dekker.Google Scholar
  21. Eldridge, B. P., and Callicrate, J. 1982. Efficacy of Bacillus thuringiensis var. israelensis de Barjac for mosquito control in a western Oregon pond. Mosq. News 42:102–105.Google Scholar
  22. Eldridge, B. F.; Washino, R. K; and Hennenberger, D. 1985. Control of snow pool mosquitoes with Bacillus thuringiensis ser. H-14 in mountain environments in California and Oregon. J Amer. Mosq. Control Assoc 1:69–75.Google Scholar
  23. Foo, A.E.S., and Yap, H. H. 1983. Field trials on the use of Bacillus thuringiensis serotype H-14 against Mansonia mosquitoes in Malaysia. Mosq. News 43: 306–310.Google Scholar
  24. Garcia, R; Des Rochers, B.; and Tozer, W. 1980. Studies on the the toxicity of Bacillus thuringiensis var. israelensis against organisms found in association with mosquito larvae. Calif Mosq. and Vector Control Assoc Proc & Papers 48: 33–36.Google Scholar
  25. Garcia, R; Des Rochers, B.; Tozer, W.; and McNamara, J. 1983. Evaluation of Bacillus thuringiensis var. israelensis serotype H-14 for mosquito control. Calif Mosq. and Vector Control Assoc Proc &Papers 51: 25–29.Google Scholar
  26. Goldberg, L. J., and Margalit, J. 1977. A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unquiculata, Culex univitattus, Aedes aegypti, and Culex pipiens Mosq. News 37: 355–358.Google Scholar
  27. Hall, I. M.; Arakawa, K Y; Dulmage, H. T.; and Correa, J. A. 1977. The pathogenecity of strains of Bacillus thuringiensis to larvae of Aedes and to Culex mosquitoes. Mosq. News 37: 246–251.Google Scholar
  28. Hare, S.G.F., and Nasci, R S. 1986. Effects of sublethal exposure to Bacillus thuringiensis var. israelensis on larval development and adult size in Aedes aegypti J. Amer. Mosq Control Assoc 2: 325–328.Google Scholar
  29. Hougard, J. M.; Darriet, F.; and Bakayoko, S. 1983. Evaluation en milieu naturel de l’activité lar-vicide de Bacillus thuringiensis s’rotype H-14 sur Culex quinquefasciatus Say, 1823 et Anopheles gambiae Giles, 1902 s.l. (Diptera: Culicidae) en Afrique de l’Ouest. Cab. ORSTOM, sér. Ent méd et Parasitol 21 (2): 111–117.Google Scholar
  30. Hougard, J. M.; Duval, J.; and Escaffre, H. 1985. Évaluation en milieu naturel de l’activité larvicide de une formulation de Bacillus thuringiensis H-14 sut Aedes aegypti (L.) dans un foyer épidemique de fieure jaune en Cδte d’Ivoire. Cab. ORSTOM, sér. Ent méd et Parasitol 23: 235–240.Google Scholar
  31. Lacey, L. A. 1985. Bacillus thuringiensis serotype H-14. Amer. Mosq. Control Assoc Bull 6: 132–158.Google Scholar
  32. Lacey, L. A., and Inman, A. 1985. Efficacy of granular formulations of Bacillus thuringiensis (H-14 ) for the control of Anopheles larvae in rice fields. J Amer. Mosq. Control Assoc 1:38–42.Google Scholar
  33. Lacey, L A., and Mulla, M. S. 1990. Safety of Bacillus thuringiensis var. israelensis and Bacillus sphaericus to nontarget organisms in the aquatic environment. In Safety of microbial insecticides, ed. Laird, M., Lacey, L A., and Davidson, E. W. CRC Press. In press.Google Scholar
  34. Lacey, L A., and Undeen, A. H. 1986. Microbial control of black flies and mosquitoes. Ann Rev. Entomol 31: 265–296.CrossRefGoogle Scholar
  35. Lacey, L A.; Urbina, M. J.; and Heitzman, C. M. 1984. Sustained release formulations of Bacillus sphaericus and Bacillus thuringiensis (H-14) for control of container breeding Culex quinquefasciatus. Mosq News 44: 26–32.Google Scholar
  36. Majori, G., and Ali, A. 1984. 1984. Laboratory and field evaluation of industrial formulations of Bacillus thuringiensis serovar israelensis against some mosquito species of central Italy. J Invertebr. Pathol 43: 316–323.PubMedCrossRefGoogle Scholar
  37. Majori, G.; Ali, A.; and Sabatinelli, G. 1987. Laboratory and field efficacy of Bacillus thuringiensis var. israelensis and B. sphaericus against Anopheles gambiae s.l. and Culex quinquefasciatus in Ouagadougou, Burkina Faso. J Amer. Mosquito Control Assoc 3: 20–25.Google Scholar
  38. Margalit, J., and Bobroglio, H. 1984. The effect of organic materials and solids in water on the persistence of Bacillus thuringiensis var. israelensis Z. Angew. Entomol 97: 516–520.CrossRefGoogle Scholar
  39. Margalit, J.; Markus, A.; and Pelah, Z. 1984. Effect of encapsulation on the persistence of Bacillus thuringiensis var. israelensis (H-14).Appl Microbiol Biotechnol 19: 382–383.CrossRefGoogle Scholar
  40. Margalit, J.; Pascar-Gluzman, C; Bobroglio, H.; Barak, Z.; and Lakhim-Tsror, L. 1985. Biocontrol of mosquitoes in Israel. In Integrated mosquito control methodologies, ed. M. Laird and J. W. Miles, 2: 361–374. San Diego: Academic Press.Google Scholar
  41. Miura, T.; Takahashi, R. M.; and Mulligan, F. S. 1980. Effects of the bacterial mosquito larvicide Bacillus thuringiensis serotype H-14 on selected aquatic organisms. Mosq. News 40:619–622.Google Scholar
  42. Mulla, M. S. 1976. Evolution of chemical control strategies for mosquitoes: Conventional, novel, and natural chemicals. Calif. Mosq. Control Assoc Proc & Papers 44:71–77.Google Scholar
  43. ——— 1985. Field evaluation and efficacy of bacterial agents and their formulations against mosquito larvae. In Integrated mosquito control methodologies, ed. M. Laird and J. W. Miles, 2: 227—250. San Diego: Academic Press.Google Scholar
  44. ——— 1986. Role of B.t.i. and Bacillus sphaericus in mosquito control programs. In Fundamental and applied aspects of invertebrate pathology, ed. R. A. Sampson, J. M. Vlak, and D. Peters, 494–496. Foundation Fourth International Colloquium of Invertebrate Pathology. Wageningen, The Netherlands.Google Scholar
  45. Mulla, M. S., and Darwazeh, H. A. 1984. Larvicidal efficacy of various formulations of Bacillus thuringiensis serotype H-14 against mosquitoes. Bull Soc Vector Ecol 9: 51–58.Google Scholar
  46. ——— 1985. Efficacy of formulations of Bacillus thuringiensis H-14 against mosquito larvae. Bull Soc Vector Ecol 10:14–19.Google Scholar
  47. Mulla, M. S.; Darwazeh, H. A.; and Aly, C. 1986. Laboratory and field studies on new formulations of two microbial control agents against mosquitoes. Bull Soc Vector Ecol 11: 255–263.Google Scholar
  48. Mulla, M. S.; Darwazeh, H. A.; Ede, L; Kennedy, B.; and Dulmage, H. T. 1985. Efficacy and field evaluation of Bacillus thuringiensis (H-14) and B. sphaericus against floodwater mosquitoes in California. J Amer. Mosq. Control Assoc 1: 310–315.Google Scholar
  49. Mulla, M. S.; Federici, B. A.; and Darwazeh, H. A. 1982. Larvicidal efficacy of Bacillus thuringiensis ser. H-14 against stagnant-water mosquitoes and its effec r. H-14 against floodwater mosquitoes. Appl Environ Microbiol 43: 1288–1293.PubMedGoogle Scholar
  50. Margalit, J.; Markus, A.; and Pelah, Z. 1984. Effect of encapsulation on the persistence of Bacillus thuringiensis var. israelensis (H-14). Appl Microbiol Biotechnol 19. 382–383.CrossRefGoogle Scholar
  51. Ramoska, W. A.; Watts, S.; and Rodrigues, R. E. 1982. Influence of suspended particulates on the activity of Bacillus thuringiensis ser. H-14 against mosquito larvae. J Econ Entomol 75:1–4.Google Scholar
  52. Rashed, S. S., and Mulla, M. S. 1989. Factors influencing ingestion of particulate materials by mosquito larvae (Diptera: CuUcidae). J Med Entomol 26: 210–216.PubMedGoogle Scholar
  53. Roberts, D. W., and Castillo, J. M. 1980. Bibliography on pathogens of medically important arthropods. WHO Bull., suppl 58: 1–197.Google Scholar
  54. Roberts, D. W., and Strand, M. A. 1977. Pathogens of medically important arthropods. WHO Bull, suppl 1. 55: 1–419.Google Scholar
  55. Sandoski, C. A.; Yates, M. W.; Olson, J. K.; and Meisch, M, V. 1985. Evaluation of Beecomist® applled Bacillus thuringiensis (H-14) against Anopheles quadrimaculatus larvae. J Amer. Mosq. Control Assoc 1: 316–319.Google Scholar
  56. Schnetter, W.; Engler-Fritz, S.; Aly, C; and Becker, N. 1983. Anwendung von Bacillus thuringiensis var. israelensis Präparaten gegen Stechmücken an Oberrhein. Mitt dtsch. Ges allg an-gew Ent 4: 18–25.Google Scholar
  57. Service, M. W. 1973. Study of the natural predators of Aedes cantans (Meigen) using the precipitin tests. J Med Entomol 10: 503–510.PubMedGoogle Scholar
  58. ——— 1977. Mortalities of the immature stages of species B of the Anopheles gambiae complex in Kenya: Comparison between rice fields and temporary pools, identification of predators, and eflfects of insecticidal spraying. J Med Entomol 13: 535–545.Google Scholar
  59. Sinégre, G.; Gaven, B.; Jullien, J. L; and Crespo, O. 1980. Activité du sérotype H-14 de Bacillus thuringiensis vis-à-vis des principales espèces de moustiques anthropophiles du littoral Mediterranean Frsincaise. Parasitologia 22: 223–231.Google Scholar
  60. Sjogren, R. D.; Batzer, D. P.; and junemann, M. A. 1986. Evaluation of methoprene, temephos, and Bacillus thuringiensis var. israelensis against Coquilletidia perturbans larvae in Minnesota. J Amer. Mosq. Control Assoc 2: 276–279.Google Scholar
  61. Standaert, J. Y. 1981. Persistence et l’efficacité de Bacillus thuringiensis H-14 sur les larves de Anopheles stephensi. Z. Angew. Entomol 91: 292–300.CrossRefGoogle Scholar
  62. Stark, P. M., and Meisch, M. V. 1983. Efficacy of Bacillus thuringiensis serotype H-14 against Psorophora columbiae and Anopheles quadrimaculatus in Arkansas ricelands. Mosq News 43: 59–62.Google Scholar
  63. Sutherland, D. J.; Kung, S. P.; Ehrenburg, H.; Hanson, J.; and Rupp, H. 1982. Formulations of B.t.i. and their evaluations. N.J. Mosquito Control Assoc. Proc. 69: 93–101.Google Scholar
  64. Yu, H. S.; Lee, D. K.; Na, J. O.; and Ban, S.J. 1983. Integrated control of mosquitoes by combined use of Bacillus thuringiensis var. israelensis and larvivorous fish Aplocheilus latipies in simulated rice paddies in South Korea. Korean J. Entomol 13: 75–84.Google Scholar
  65. Yu, H. S.; Shim, J. C; Lee, D. K; and Yun, Y. H. 1981. Mosquito control by Bacillus thuringiensis israelensis in simulated rice paddies (abstract). Korean J. Entomol 11: 51–52.Google Scholar

Copyright information

© Rutgers University Press 1990

Authors and Affiliations

  • Mir S. Mulla

There are no affiliations available

Personalised recommendations