The Structure of Syncytia

  • Wladyslaw Golinowski
  • Miroslaw Sobczak
  • Wojciech Kurek
  • Grazyna Grymaszewska

Abstract

Infective second stage juveniles of the cyst forming genera of plant parasitic nematodes (Heterodera and Globodera) induce the formation of feeding sites in roots of resistant and susceptible plants. Under special experimental conditions in Arabidopsis thaliana, future males select the initial syncytial cell (ISC) in the pericycle and future females select their ISC in the procambium. After a preparation phase the nematode feeding site is still unicellular. Cytoplasmic streaming and cytoplasm density, amount of endoplasmic reticulum (ER) and volume of nucleus are increased while the volume of central vacuole is decreased and new small cytoplasmic vacuoles are formed. The cell walls are thickened and covered by a layer of callose-like material. The developing syncytia expand along the vascular cylinder. The expansion of the syncytium triggers the proliferation of cambial and peridermal tissues, in a manner similar to secondary growth. Compared with syncytia associated with females, syncytia of males are less hypertrophied and are composed of more cells. Distinctive cell wall openings are mostly found between the few strongly hypertrophied pericyclic syncytial elements. The ultrastructure of both types of syncytia is very similar but shows conspicuous differences in the structure and localisation of cell wall ingrowths.

Cultivars resistant to nematodes share some common reactions upon nematode infection. At the stage of migration and ISC selection there are no essential differences between susceptible and resistant plants. However, at the stage of syncytium induction some resistant plants show a very quick defence based on the hypersensitive response (HR). Many other resistant plants do not exhibit the HR. In these cases resistance develops more gradually during syncytium formation. The resistance can be correlated with changes in symplast and apoplast. In the symplast they usually deal with the ER. Another characteristic change is gradual reduction of cytoplasm density indicating loss of its physiological activity. Changes in apoplast can be responsible for the obstruction of syncytial development. The syncytial cell walls are abnormally thickened and restructured. The cell wall openings are smaller and less numerous. The syncytia are often surrounded by a conspicuous layer of necrotic cells. Syncytia developing in roots of resistant plants necrotise prematurely.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bingefors, S. (1982) Nature of inherited nematode resistance in plants, in Harris, K.F. and K. Maramorosch (eds.), Pathogens, Vectors, and Plant Diseases: Approaches to Control, Academic Press, N. Y., pp. 187–219.CrossRefGoogle Scholar
  2. 2.
    Bleve-Zacheo, T., Melillo, M.T., Andres, M., Zacheo, G. and Romero, M.D. (1995) Ultrastructure of initial response of graminaceous roots to infection by Heterodera avenae, Nematologica 41, 80–97.CrossRefGoogle Scholar
  3. 3.
    Bleve-Zacheo, T., Melillo, M.T. and Zacheo, G. (1990) Syncytia development in germplasm pea accessions infected with Heterodera goettingiana. Nematol. mediter. 18, 93–102.Google Scholar
  4. 4.
    Bleve-Zacheo, T. and Zacheo, G. (1987) Cytological studies of the susceptible reaction of sugarbeet roots to Heterodera schachtii, Physiol. Mol. Plant Pathol. 30, 13–25.CrossRefGoogle Scholar
  5. 5.
    Di Vito, M. and Vovlas, N. (1990) Differential histological response of selected Cicer bijugum and C. arietinum lines to Heterodera ciceri, Nematol. mediter. 18, 165–167.Google Scholar
  6. 6.
    Endo, B.Y. (1964) Penetration and development of Heterodera glycines in soybean roots and related anatomical changes, Phytopathology 54, 79–88.Google Scholar
  7. 7.
    Endo, B.Y. (1965) Histological responses of resistant and susceptible varieties and backcross progeny to entry and development of Heterodera glycines, Phytopathology 55, 375–381.Google Scholar
  8. 8.
    Endo, B.Y. (1971) Nematode-induced syncytia (giant cells). Host-parasite relationships of Heteroderidae, in B.M. Zukerman, W.F. Mai and R.A. Rohde (eds.), Plant Parasitic Nematodes, vol. 2, Academic Press, N.Y., pp. 91–117.Google Scholar
  9. 9.
    Endo, B.Y. (1975) Pathogenesis of nematode-infected plants, Annu. Rev. Phytopathol. 13, 213–238.CrossRefGoogle Scholar
  10. 10.
    Endo, B.Y. (1978) Feeding plug formation in soybean roots infected with the soybean cyst nematode, Phytopathology 68, 1022–1031.CrossRefGoogle Scholar
  11. 11.
    Endo, B.Y. (1991) Ultrastructure of initial responses of susceptible and resistant soybean roots to infection by Heterodera glycines, Rev. Nématol. 14, 73–94.Google Scholar
  12. 12.
    Endo, B.Y. and Veech, J.A. (1970) Morphology and histochemistry of soybean infected with Heterodera glycines, Phytopathology 60, 1493–1498.CrossRefGoogle Scholar
  13. 13.
    Gipson, I., Kim, K.S. and Riggs, R.D. (1971) An ultrastructural study of syncytium development in soybean roots infected with Heterodera glycines, Phytopathology 61, 253–346.CrossRefGoogle Scholar
  14. 14.
    Golinowski, W., Grundler, F.M.W. and Sobczak, M. (1996) Changes in the structure of Arabidopsis thaliana induced during development of females of the plant parasitic nematode Heterodera schachtii, Protoplasma, 194, 103–116.CrossRefGoogle Scholar
  15. 15.
    Golinowski, W. and Magnusson, C. (1991) Tissue response induced by Heterodera schachtii (Nematoda) in susceptible and resistant white mustard cultivars, Can. J. Bot. 69, 53–62.CrossRefGoogle Scholar
  16. 16.
    Grundler, F.M.W. (1989) Untersuchungen zur Geschlechtsdetermination des Rübenzystennematoden Heterodera schachtii Schmidt, PhD thesis, University of Kiel.Google Scholar
  17. 17.
    Grundler, F.M.W., Böckenhoff, A., Schmidt, K.-P., Sobczak, M., Golinowski, W. and Wyss, U. (1994a) Arabidopsis thaliana and Heterodera schachtii, a versatile model to characterize the interaction between host plants and cyst nematodes, in F. Lamberti, C. De Giorgi, and D.McK. Bird (eds.), Advances in Molecular Plant Nematology, NATO ASI Series A: no. 268, Plenum Press, N.Y., pp. 171–180.CrossRefGoogle Scholar
  18. 18.
    Grundler, F.M.W. and Wyss, U. (1995) Strategies of root parasitism by sedentary plant parasitic nematodes, in U.S. Singh, K. Kohmoto and R.P. Singh (eds.), Pathogenesis and Host Specificity in Plant Diseases, vol. II. Pergamon Press, Oxford, UK, pp. 309–319.Google Scholar
  19. 19.
    Grundler, F.M.W., Wyss, U. and Golinowski, W. (1994b) Sedentary endoparasitic nematodes in Arabidopsis thaliana, in J. Bowman (ed.), Arabidopsis, an Atlas of Morphology and Development, Springer, N.Y., pp. 418–423.Google Scholar
  20. 20.
    Grymaszewska, G. and Golinowski, W. (1987) Changes in the structure of wheat (Triticum aestivum L.) roots in varieties susceptible and resistant to infection by Heterodera avenae Woll., Acta Soc. Bot. Pol. 56, 381–383.CrossRefGoogle Scholar
  21. 21.
    Grymaszewska, G. and Golinowski, W. (1991) Structure of syncytia induced by Heterodera avenae Woll. in roots of susceptible and resistant wheat (Triticum aestivum L.), J. Phytopathol. 133, 307–319.CrossRefGoogle Scholar
  22. 22.
    Hoopes, R.W., Anderson, R.E. and Mai, W.F. (1978) Internal response of resistant and susceptible potato clones to invasion by potato cyst nematode Heterodera rostochiensis, Nematropica 8, 13–20.Google Scholar
  23. 23.
    Hussey, R.S. (1989) Disease-inducing secretions of plant parasitic nematodes. Annu. Rev. Phytopathol, 27, 123–141.CrossRefGoogle Scholar
  24. 24.
    Hussey, R.S., Davis, E.L. and Ray, C. (1994) Meloidogyne stylet secretions, in F. Lamberti, C. De Giorgi, and D.McK. Bird (eds.), Advances in Molecular Plant Nematology, NATO ASI Series A: no. 268, Plenum Press, N.Y., pp. 233–248.CrossRefGoogle Scholar
  25. 25.
    Jones, A.M. and Dangl, J.L. (1996) Longjam at the Styx: programmed cell death in plants, Trends Plant Sci. 1, 114–119.CrossRefGoogle Scholar
  26. 26.
    Jones, M.G.K. (1981a) Host cell responses to endoparasitic nematode attack: Structure and function of giant cells and syncytia, Ann. Appl. Biol. 97, 353–372.CrossRefGoogle Scholar
  27. 27.
    Jones, M.G.K. (1981b) The development and function of plant cells modified by endoparasitic nematodes, in B.M. Zukerman and R.A. Rohde (eds.) Plant Parasitic Nematodes, vol. III, Academic Press, N.Y., pp. 255–279.CrossRefGoogle Scholar
  28. 28.
    Jones, M.G.K. and Dropkin, V.H. (1975) Scanning electron microscopy of syncytial transfer cells induced in roots by cyst nematodes, Physiol. Plant Pathol. 7, 259–263.CrossRefGoogle Scholar
  29. 29.
    Jones, M.G.K. and Northcote, D.H. (1972) Nematode-induced syncytium-a multinucleate transfer cell, J. Cell Sci. 10, 789–809.PubMedGoogle Scholar
  30. 30.
    Kim, Y.H., Riggs, R.D. and Kim, K.S. (1987) Structural changes associated with resistance of soybean to Heterodera glycines, J. Nematol. 19, 177–187.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Luc, M., Maggenti, A.R. and Fortuner, R. (1988) A reappraisal of Tylenchina (Nemata). 9. The family Heteroderidae Filip’ev & Schuurmans Stekhoven, 1941, Rev. N (matol. 11, 159–176.Google Scholar
  32. 32.
    Magnusson, C. and Golinowski, W. (1991) Ultrastructural relationships of the developing syncytium induced by Heterodera schachtii (Nematoda) in root tissue of rape, Can. J. Bot. 69, 44–52.CrossRefGoogle Scholar
  33. 33.
    Melillo, M.T., Bleve-Zacheo, T. and Zacheo, G. (1990a) Ultrastructural response of potato roots susceptible to cyst nematode Globodera pallida pathotype Pa3, Rev. N(matol. 13, 17–28.Google Scholar
  34. 34.
    Melillo, M.T., Bleve-Zacheo, T., Zacheo, G. and Perrino, P. (1990b) Morphology and enzyme histochemistry in germplasm pea roots attacked by Heterodera goettingiana, Nematol. mediter. 18, 83–91.Google Scholar
  35. 35.
    Mittler, R. and Lam, E. (1996) Sacrifice in the face of foes: pathogen-induced programmed cell death in plants, Trends Microbiol. 4, 10–15.PubMedCrossRefGoogle Scholar
  36. 36.
    Mugniery, D. and Bossis, M. (1985) Influence de l’hote, de la compétition et de l’état physiologique des juvéniles sur la pénétration, le développement et la sexe d’Heterodera carotae Jones. Nematologica 31, 335–343.CrossRefGoogle Scholar
  37. 37.
    Mugniery, D. and Fayet, G. (1981) Determination du sexe chez Globodera pallida Stone, Rev. N(matol. 4, 41–45.Google Scholar
  38. 38.
    Mugniery, D. and Fayet, G. (1984) Détermination du sexe de Globodera rostochiensis Woll. et influence des niveaux d’infestacion sur la pénétration le développement et le sexe de ce nématode, Rev. N(matol. 7, 233–238.Google Scholar
  39. 39.
    Raski, D.J. (1950) The life history and morphology of the sugar beet nematode, Heterodera schachtii Schmidt, Phytopathology 40, 135–150.Google Scholar
  40. 40.
    Rice, S.L., Leadbeater, B.S.C. and Stone, A.R. (1985) Changes in cell structure in roots of resistant potatoes parasitized by potato cyst nematodes. 1. Potatoes with resistance gene H1 derived from Solanum tuberosum ssp. andigena, Physiol. Plant Pathol. 27, 219–234.CrossRefGoogle Scholar
  41. 41.
    Rice, S.L., Stone, A.R. and Leadbeater, B.S.C. (1987) Changes in cell structure in roots of resistant potatoes parasitized by potatoes cyst nematodes. 2. Potatoes with resistance derived from Solanum vernei, Physiol. Mol. Plant Pathol. 31, 1–14.CrossRefGoogle Scholar
  42. 42.
    Riggs, R.D., Kim, K.S. and Gipson, I. (1973) Ultrastructural changes in Peking soybeans infected with Heterodera glycines, Phytopathology 63, 76–84.CrossRefGoogle Scholar
  43. 43.
    Sijmons, P.C., Grundler, F.M.W., von Mende, N., Burrows, P.R. and Wyss, U. (1991) Arabidopsis thaliana as a new model host for plant-parasitic nematodes, Plant J. 1, 245–254.CrossRefGoogle Scholar
  44. 44.
    Sijmons, P.C., Atkinson, H.J. and Wyss, U. (1994) Parasitic strategies of root nematodes and associated host cell responses, Annu. Rev. Phytopaihol 32, 235–259.CrossRefGoogle Scholar
  45. 45.
    Sobczak, M. (1996) Investigations on the structure of syncytia in roots of Arabidopsis thaliana induced by the beet cyst nematode Heterodera schachtii and its relevance to the sex of the nematode. PhD Thesis, University of Kiel.Google Scholar
  46. 46.
    Sobczak, M., Golinowski, W. and Grundler, F.M.W. (1996) Changes in the structure of Arabidopsis thaliana roots induced during development of males of the plant parasitic nematode Heterodera schachtii, Europ. J. Plant Pathol. in press.Google Scholar
  47. 47.
    Stender, C. Lehmann, H. and Wyss, U. (1982) Feinstrukturelle Untersuchungen zur Entwicklung von Wurzelriesenzellen (Syncytien) induziert durch Rübenzystennematoden Heterodera schachtii, Flora 172, 223–233.Google Scholar
  48. 48.
    Williams, K.J. and Fisher, J.M. (1993) Development of Heterodera avenae Woll. and host cellular responses in susceptible and resistant wheat, Fundam. Appl. Nematol. 16, 417–423.Google Scholar
  49. 49.
    Wilski, A. (1977) M1twik zbo¿owy Heterodera avenae Woll. (1924), PAN, Komitet Ochrony Roœlin.Google Scholar
  50. 50.
    Wyss, U. (1992) Observations on the feeding behaviour of Heterodera schachtii throughout development, including events during moulting, Fundam. Appl. Nematol. 15, 75–89.Google Scholar
  51. 51.
    Wyss, U., Stender, C. and Lehmann, H. (1984) Ultrastructure of feeding sites of the cyst nematode Heterodera schachtii Schmidt in roots of susceptible and resistant Raphanus sativus L. var. oleiformis Pers. cultivars, Physiol. Plant Pathol. 25, 21–37.CrossRefGoogle Scholar
  52. 52.
    Wyss, U. and Zunke, U. (1986) Observations on the behaviour of second stage juveniles of Heterodera schachtii inside host roots, Rev. Nématol. 9, 153–165.Google Scholar
  53. 53.
    Yu, M.H. and Steele, A.E. (1981) Host-parasite interaction of resistant sugarbeet and Heterodera schachtii, J. Nematol. 13, 206–212.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Wladyslaw Golinowski
    • 1
  • Miroslaw Sobczak
    • 1
  • Wojciech Kurek
    • 1
  • Grazyna Grymaszewska
    • 1
  1. 1.Department of BotanyWarsaw Agricultural UniversityWarszawaPoland

Personalised recommendations