Modeling Radiative Transfer through Forest Canopies: Implications for Canopy Photosynthesis and Remote Sensing

  • Tiit Nilson
  • Juhan Ross

Abstract

In order to theoretically describe the radiative transfer inside a forest canopy, information must be obtained on the following basic geometrical and optical characteristics: the geometrical cross section of foliage elements, three-dimensional distribution of their area volume density and the phase function. In coniferous trees and stands, it is reasonable to consider one-yr-old shoots main foliage elements. Theoretical problems related to the determination of optical parameters in the hierarchical levels of needle, shoot, crown and canopy are discussed and a few examples demonstrating the structural and optical complexities of forest communities are presented. A brief description of the basic components of a new forest ecosystem radiation model and some examples of the results obtained are given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asrar, G. (ed). 1989. Theory and Applications of Optical Remote Sensing. — J. Wiley and Sons, New York. 734 pp.Google Scholar
  2. Borel-Donohue, C.C. 1988. “Models for backscattering of millimeter waves from vegetation canopies.” — Ph.D. thesis, University of Massachusetts, Boston.Google Scholar
  3. Brakke, T.W. 1994. Specular and diffuse components of radiation scattered by leaves. — Agric. For. Meteorol. 71: 283–295.CrossRefGoogle Scholar
  4. Brakke, T.W., Smith, J.A. and Harnden, J.M. 1989. Bidirectional scattering of light from tree leaves. — Rem. Sens. Environ. 29: 175–183.CrossRefGoogle Scholar
  5. Carter, G.A. and Smith, W.K. 1985. Influence of shoot structure on light interception and photosynthesis in conifers. — Plant Physiol. 79: 1038–1043.PubMedCrossRefGoogle Scholar
  6. Chen, J.M. and Black, T.A. 1991. Measuring leaf area index of plant canopies with branch architecture. — Agric. For. Meteorol. 57: 1–12.CrossRefGoogle Scholar
  7. Chen, J.M. and Black, T.A. 1992. Defining leaf area index for non-flat leaves. — Plant Cell Environ. 15: 421–429.CrossRefGoogle Scholar
  8. Chen, J.M., Black, T.A. and Adams, R.S. 1991. Evaluation of hemispherical photography in determining plant area index and geometry of a forest stand. — Agric. For. Meteorol. 56: 129–143.CrossRefGoogle Scholar
  9. Gerstl, S.W. and Borel-Donohue, C.C. 1992. Principles of the radiosity method versus radiative transfer for canopy reflectance modeling. — Trans. Geosci. Rem. Sens. 30: 271–275.CrossRefGoogle Scholar
  10. Goel, N.S. 1988. Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data. — Rem. Sens. Rev. 4: 1–212.CrossRefGoogle Scholar
  11. Goel, N.S. and Norman, J.M. (eds). 1990. Instrumentation for studying vegetation canopies for remote sensing in optical and thermal infrared regions. — Rem. Sens. Rev. 5(1): 1–360.Google Scholar
  12. Gower, S.T. and Norman, J.M. 1991. Rapid estimation of leaf area index in conifer and broad-leaf stands using the LI-COR LAI-2000. — Ecology 72: 1896–1900.CrossRefGoogle Scholar
  13. Gutschick, V.P. 1991. Joining leaf photosynthesis models and canopy photon-transport models.–In: Myneni, R.B. and Ross, J. (eds). Photon-Vegetation Interactions. Applications in Optical Remote Sensing and Plant Ecology. Springer-Verlag, Berlin, pp. 504–535.Google Scholar
  14. Hari, P., Kaipiainen, L., Korpilahti, E., Mäkelä, A., Nilson, T., Oker-Blom, P., Ross, J. and Salminen, R. 1985. Structure, radiation and photosynthetic productivity in coniferous stands. — Research Notes 54, Department of Silviculture, University of Helsinki. 233 pp.Google Scholar
  15. Hari, P., Korpilahti, E., Pohja, T. and Räsänen, P. 1990. A field system for measuring the gas exchange of forest trees. — Silva Fenn. 24: 21–27.Google Scholar
  16. Jacquemoud, S. and Baret, F. 1990. A model of leaf optical properties spectra. — Rem. Sens. Environ. 34: 75–91.CrossRefGoogle Scholar
  17. Jupp, D.L.B. and Walker, J. 1996. Detecting structural and growth changes in woodlands and forests: The challenge for remote sensing and the role of geometric optical modelling. — In: Gholz, H.L., Nakane, K. and Shimoda, H. (eds). The Use of Remote Sensing in the Modeling of Forest Productivity. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 75–108.Google Scholar
  18. Koop, H. 1989. Forest dynamics. SILVI-STAR: A Comprehensive Monitoring System. — Springer-Verlag, Berlin. 229 pp.Google Scholar
  19. Kuusk, A. 1991. The hot spot effect in plant canopy reflectance. — In: Myneni, R.B. and Ross, J. (eds). Photon-Vegetation Interactions. Applications in Optical Remote Sensing and Plant Ecology. Springer-Verlag, Berlin, pp. 139–159.CrossRefGoogle Scholar
  20. Kuusk, A. 1994. A multispectral canopy reflectance model. — Rem. Sens. Environ. 50: 75–82.CrossRefGoogle Scholar
  21. Li, X. and Strahler, A.H. 1985. Geometric-optical modeling of a conifer forest canopy. — Trans. Geosci. Rem. Sens. 23: 705–721.CrossRefGoogle Scholar
  22. Moldau, H. 1965. On the use of polarized radiation to analyse the reflection indicatrixes of leaves. — In: Investigations on Atmospheric Physics 7: Questions of Radiation Regime of Plant Stand (in Russian). Academy of Sciences ESSR, Institute of Physics and Astronomy, Tartu, Estonia, pp. 96–101.Google Scholar
  23. Myneni, R.B. and Ross, J. (eds). 1991. Photon-Vegetation Interactions. Applications in Optical Remote Sensing and Plant Ecology. — Springer-Verlag, Berlin, 565 pp.Google Scholar
  24. Myneni, R.B., Ross, J. and Asrar, G. 1989. A review on the theory of photon transport in leaf canopies. — Agric. For. Meteorol. 45: 1–153.CrossRefGoogle Scholar
  25. Nilson, T. 1991. Approximate analytical methods for calculating the reflection functions of leaf canopies in remote sensing applications. — In: Myneni, R.B. and Ross, J. (eds). Photon-Vegetation Interactions. Applications in Optical Remote Sensing and Plant Ecology. Springer-Verlag, Berlin, pp. 161–190.CrossRefGoogle Scholar
  26. Nilson, T. 1992. Radiative transfer in nonhomogeneous plant canopies. — In: Stanhill, G. (ed). Advances in Bioclimatology 1. Springer-Verlag, Berlin, pp. 60–88.Google Scholar
  27. Nilson, T. and Kuusk, A. 1989. A reflectance model for the homogeneous plant canopy and its inversion. — Rem. Sens. Environ. 27: 157–167.CrossRefGoogle Scholar
  28. Nilson, T. and Peterson, U. 1991. A forest canopy reflectance model and a test case. — Rem. Sens. Environ. 37: 131–142.CrossRefGoogle Scholar
  29. Nilson, T. and Peterson, U. 1994. Age dependence of forest reflectance: Analysis of main driving factors. — Rem. Sens. Environ. 48: 319–331.CrossRefGoogle Scholar
  30. Norman, J.M. and Jarvis, P. 1975. Photosynthesis in sitka spruce (Picea sitchensis (Bong.) Carr.). Part 5. Radiation penetration and a test case. — J. Appl. Ecol. 12: 839–878.CrossRefGoogle Scholar
  31. Oker-Blom, P. 1986. Irradiance distribution and photosynthesis of a Scots pine shoot as influenced by shoot structure and solar radiation field geometry. — In: Fujimori, T. and Whitehead, D. (eds). Crown and Canopy Structure in Relation to Productivity. Forestry and Forest Products Research Institute, Ibaraki, Japan, pp. 382–395.Google Scholar
  32. Oker-Blom, P. and Smolander, H. 1988. The ratio of shoot silhouette area to total needle area in Scots pine. — For. Sci. 34: 894–906.Google Scholar
  33. Oker-Blom, P., Kotisaari, A., Kellomäki, S., Ross, J. and Smolander, H. 1986. Crown projection area of young Pinus sylvestris: A model and its test. — Scand. J. For. Res. 1: 67–74.CrossRefGoogle Scholar
  34. Oker-Blom, P., Lappi, J. and Smolander, H. 1991. Radiation regime and photosynthesis of coniferous stands. — In: Myneni, R.B. and Ross, J. (eds). Photon-Vegetation Interactions. Applications in Optical Remote Sensing and Plant Ecology. Springer-Verlag, Berlin, pp. 469–499.CrossRefGoogle Scholar
  35. Pfreundt, J. 1988. Modellierung der räumlichen Verteilung von Strahlung, Photosynthesekapazität und Produktion in einem Fichtebestand und ihrer Bezeihung zur Bestandsstruktur. — Univ. Göttingen, Berichte des Forhungszentrums Waldökosysteme/Waldsterben, Reiche A, Bd. 39. 163 pp.Google Scholar
  36. Ross, J. 1981. The Radiation Regime and Architecture of Plant Stands. — D.R. Junk Publishers, The Hague, The Netherlands. 391 pp.CrossRefGoogle Scholar
  37. Ross, J. and Marshak, A. 1991. Monte Carlo methods. — In: Myneni, R.B. and Ross, J. (eds). Photon-Vegetation Interactions. Applications in Optical Remote Sensing and Plant Ecology. Springer-Verlag, Berlin, pp. 442–467.Google Scholar
  38. Ross, J., Meinander, O. and Sulev, M. 1994. Spectral scattering properties of Scots pine shoots. — In: Proceedings of the IGARSS ′94 Symposium, August 8–12, 1994, California Institute of Technology, Pasadena, CA, Vol. 2, pp. 1451–1454.Google Scholar
  39. Ross, J., Stenberg, P., Berninger, F. and Hari, P. 1995. The influence of shoot architecture on net photosynthesis. — In: Hari, P., Ross, J. and Mecke, M. (eds). Production process of Scots pine: Geographical variation and models. Acta For. Fenn. (in press).Google Scholar
  40. Smith, N.J., Chen, J.M. and Black, T.A. 1993. Effects of clumping on estimates of stand leaf area index using the LI-COR LAI-2000. — Can. J. For. Res. 23: 1940–1943.CrossRefGoogle Scholar
  41. Smolander, H., Oker-Blom, P., Ross, J., Kellomäki, S. and Lahti, T. 1987. Photosynthesis of a Scots pine shoot: Test of a shoot photosynthesis model in a direct radiation field. — Agric. For. Meteorol. 39: 67–80.CrossRefGoogle Scholar
  42. Stenberg, P., Linder, S., Smolander, H. and Flower-Ellis, J. 1994. Performance of the LAI-2000 plant canopy analyzer in estimating leaf area index of some Scots pine stands. — Tree Physiol. 14: 981–985.PubMedCrossRefGoogle Scholar
  43. Van de Hulst, H.C. 1981. Light Scattering by Small Particles. — Dover Publishers, New York. 470 pp.Google Scholar
  44. Vanderbilt, V.C., Grant, L. and Ustin, S.L. 1991. Polarization of light by vegetation. — In: Myneni, R.B. and Ross, J. (eds). Photon-Vegetation Interactions. Applications in Optical Remote Sensing and Plant Ecology. Springer-Verlag, Berlin, pp. 191–228.CrossRefGoogle Scholar
  45. Walter-Shea, E.A. and Norman, J.M. 1991. Leaf optical properties. — In: Myneni, R.B. and Ross, J. (eds). Photon-Vegetation Interactions. Applications in Optical Remote Sensing and Plant Ecology. Springer-Verlag, Berlin, pp. 229–251.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Tiit Nilson
    • 1
  • Juhan Ross
    • 1
  1. 1.Institute of Astrophysics and Atmospheric PhysicsEstonian Academy of SciencesObservatory TõravereEstonia

Personalised recommendations