A comparison of different protocols for RAPD analysis of Littorina

  • N. Mikhailova
  • K. Johannesson
Chapter
Part of the Developments in Hydrobiology book series (DIHY, volume 133)

Abstract

Randomly amplified polymorphic DNA (RAPD) is a fast and useful method of genome marking that is useful for studies of, for example, parentage, mating patterns, taxonomy of sibling species and intra-specific population genetic structures. Here we compare three different procedures for extracting high molecular weight genomic DNA; phenol-chloroform, hexadecyltrimethyl ammonium-bromide (CTAB) and Chelex 100. Double phenol-chloroform and CTAB extractions both generated high amounts of high quality DNA while Chelex 100 failed to do so. We also compared PCR-amplification with different concentrations of template DNA and found that 1–2 ng per 25 μ1 of amplification cocktail gave the best results. Amplifying DNA prepared by the three extraction methods revealed that DNA extracted with double phenol-chloroform gave the clearest bands. The double phenol-chloroform extraction seems thus the most suitable extraction method for RAPD in Littorina, however Chelex may be the only method useful for extracting DNA from very small individuals, for example, pre-hatching stages.

Key words

protocols RAPD Littorina saxatilis L. obtusata L. fabalis L. littorea extracting DNA amplifying DNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamkewicz, L. S. & M. G. Harasewych, 1994. Use of random amplified polymorphic DNA (RAPD) markers to assess relationships among beach clams of the genus Donax. The Nautilus Suppl.2:51–60.Google Scholar
  2. Avise, J. C, 1994. Molecular markers, natural history and evolution. Chapman and Hall, London, 511 pp.CrossRefGoogle Scholar
  3. Barral, V., P. This, D. Imbert-Establet, C. Combes & M. Delseny, 1993. Genetic variability and evolution of the Schistosoma genome analysed by using random amplified polymorphic DNA markers. Mol. Biochem. Parasitol. 59: 211–222.PubMedCrossRefGoogle Scholar
  4. Coffroth, M. A. & J. M. Mulawka III, 1995. Identification of marine invertebrate larvae by means of PCR-RAPD species-specific markers. Limnol. Oceanogr. 40: 181–189.CrossRefGoogle Scholar
  5. Crossland, S., J. Coates, J. Grahame & P. J. Mill, 1993. Use of random amplified polymorphic DNAs (RAPDs) in separating two sibling species of Littorina. Mar. Ecol. Prog. Ser. 96: 301–305.CrossRefGoogle Scholar
  6. Crossland, S., J. Coates, J. Grahame & P. J. Mill, 1996. The Littorina saxatilis species complex — interpretation using random amplified polymorphic DNAs. In J. Taylor (ed.), Origin and Evolutionary Radiation of the Mollusca. Oxford University Press, New York: 205–209.Google Scholar
  7. Geller, J. B. & D. A. Powers, 1994. Site directed mutagenesis with the polymerase chain reaction for identification of sibling species of Mytilus. The Nautilus Suppl. 2: 141–144.Google Scholar
  8. Hadrys, H. & M. T. Siva-Jothy, 1994. Unravelling the components that underlie insect reproductive traits using a simple molecular approach. In B. Schierwater, B. Streit, G. P. Wagner & R. De-Salle (eds), Molecular Ecology and Evolution: Approaches and Applications. Birkhäuser, Basel: 75–90.Google Scholar
  9. Heath, D. D., D. R. Hatcher & T. J. Hilbish, 1996. Ecological interaction between sympatric Mytilus species on the west coast of Canada investigated using PCR markers. Mol. Ecol. 5: 443–447.PubMedGoogle Scholar
  10. Hoelzel, A. R., 1992. Molecular genetic analysis of populations. Oxford Univ. Press, New York, 315 pp.Google Scholar
  11. Janson, K., 1985. Genetic variation in three species of Caribbean periwinkles, Littorina angustior, L. lineolata, and L. ziczac (Gastropoda: Prosobranchia). Bull. mar. Sci. 37: 871–879.Google Scholar
  12. Janson, K., 1987. Genetic drift in small and recently founded populations of the marine snail Littorina saxatilis. Heredity 58: 31–37.CrossRefGoogle Scholar
  13. Johannesson, K. & B. Johannesson, 1990. Genetic variation within Littorina saxatilis (Olivi) and Littorina neglecta Bean: Is L. neglecta a good species? Hydrobiologia 193: 89–97.CrossRefGoogle Scholar
  14. Johannesson, K., B. Johannesson & U. Lundgren, 1995. Strong natural selection causes microscale allozyme variation in a marine snail. Proc. natn. Acad. Sci. USA 92: 2602–2606.CrossRefGoogle Scholar
  15. Levitan, D. R. & R. K. Grosberg, 1993. The analysis of paternity and maternity in the marine hydrozoan Hydractinia symbiolongicarpus using randomly amplified polymorphic DNA (RAPD) markers. Mol. Ecol. 2: 315–326.PubMedCrossRefGoogle Scholar
  16. Mastro, E., V. Chow & D. Hedgecock, 1982. Littorina scutulata and Littorina plena: Sibling species status of two prosobranch gastropod species confirmed by electrophoresis. Veliger 24: 239–246.Google Scholar
  17. Mikhailova, N. A., I. B. Lobov, O. I. Podgornaya & V. J. Birstein, 1995. Restriction analysis of the nuclear DNA of three species of Acipenser. The Sturg. Quarterly 3, 8–9.Google Scholar
  18. Palumbi, S. R., 1996. Nucleic Acids II: The polymerase chain reaction. In D. M. Hillis, C. Moritz & B. K. Mable (eds). Molecular Systematics, 2nd edition. Sinauer, Sunderland MA.: 205–247.Google Scholar
  19. Patwary, M. U., E. L. Kenchington, C. J. Bird & E. Zouros, 1994. The use of random polymorphic DNA markers in genetic studies of the sea scallop Placopecten magellanicus (Gmelin, 1791). J. Shellfish Res. 13: 547–553.Google Scholar
  20. Pfenninger, M., M. Frye, A. Bahl & B. Streit, 1995. Discrimination of three conchologically similar Helicellinae (Helicella, Gastropoda) species using RAPD-fingerprinting. Mol. Ecol. 4: 521–522.CrossRefGoogle Scholar
  21. Reid, D. G., 1996. Systematics and evolution of Littorina. Ray Society, London. 463 pp.Google Scholar
  22. Reid, D. G., E. Rumbak & R. H. Thomas, 1996. DNA, morphology and fossils: phylogeny and evolutionary rates of the gastropod genus Littorina. Phil. Trans. r. Soc., Lond. B 351: 877–895.CrossRefGoogle Scholar
  23. Rolán-Alvarez, E., C. Zapata & G. Alvarez, 1995. Multilocus heterozygosity and sexual selection in a natural population of the marine snail Littorina mariae (Gastropoda: Prosobranchia). Heredity 75: 17–25.CrossRefGoogle Scholar
  24. Rumbak, E., D. G. Reid & R. H. Thomas, 1994. Reconstruction of phylogeny of 11 species of Littorina (Gastropoda: Littorinidae) using mitochondrial DNA sequence data. The Nautilus Suppl. 2: 91–97.Google Scholar
  25. Rumpho, M. E., C. V. Mujer, D. L. Andrews, J. R. Manhart & S. K. Pierce, 1994. Extraction of DNA from mucilaginous tissues of a sea slug (Elysia chlorotica). BioTechniques 17: 1097–1102.PubMedGoogle Scholar
  26. Sambrook, J., E. F. Fritsch & T. Maniatis, 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, 1659 pp.Google Scholar
  27. Schierwater, B., B. Streit, G. P. Wagner & R. DeSalle, 1994. Molecular Ecology and Evolution: Approaches and Applications. Birkhäuser, Basel, 622 pp.Google Scholar
  28. Scott, M. P. & S. M. Williams, 1994. Measuring reproductive success in insects. In B. Schierwater, B. Streit, G. P. Wagner & R. DeSalle (eds), Molecular Ecology and Evolution: Approaches and Applications. Birkhäuser, Basel: 61–74.Google Scholar
  29. Sundberg, P. & S. Andersson, 1995. Random amplified polymorphic DNA (RAPD) and intraspecific variation in Oerstedia dorsalis (Hoplonemertea, Nemertea). J. mar. biol. Ass. U.K. 75: 483–490.CrossRefGoogle Scholar
  30. Tyler-Walters, H. & A. R. Hawkins, 1995. The application of RAPD markers to the study of the bivalve mollusc Lasea rubra. J. mar. biol. Ass. U.K. 75: 563–569.CrossRefGoogle Scholar
  31. Walsh, P. S., D. A. Metzger & R. Higuchi, 1991. Chelex® 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10: 506–513.PubMedGoogle Scholar
  32. Ward, R. D. & T. Warwick, 1980. Genetic differentiation in the molluscan species Littorina rudis and Littorina arcana (Prosobranchia: Littorinidae). Biol. J. linn. Soc. 14: 417–428.CrossRefGoogle Scholar
  33. Welsh, J. & M. McClelland, 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18: 7213–7218.PubMedCrossRefGoogle Scholar
  34. Williams, J. G. K., A. R. Kubelik, K. J. Livak, J. A. Rafalski & S. V. Tingey, 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531–6535.PubMedCrossRefGoogle Scholar
  35. Winnepenninckx, B., T. Backeljau & R. De Wachter, 1993. Extraction of high molecular weight DNA from molluscs. Trends in Genetics 9: 407.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • N. Mikhailova
    • 1
    • 2
  • K. Johannesson
    • 2
  1. 1.Institute of Cytology RASSt PetersburgRussia
  2. 2.Tjärnö Marine Biological LaboratoryStrömstadSweden

Personalised recommendations