Advertisement

Combining Single View Features and Asymmetry for Detection of Mass Lesions

  • Nico Karssemeijer
  • Guido Te Brake
Part of the Computational Imaging and Vision book series (CIVI, volume 13)

Abstract

Radiologists in breast cancer screening are trained to use comparisons of left and right mammograms to identify suspicious asymmetric densities. Asymmetry is not a very specific sign, as the majority of asymmetric densities are due to normal variation of the parenchymal pattern. However, when an asymmetric density has some of the characteristics that are typical for a malignant mass or appears in a region that should normally be empty, it may be suspicious. Previously, we have developed a method for detecting stellate and circumscribed masses in mammograms from single views [5], [11], based on a statistical analysis of line and gradient orientation patterns. In this study we investigated the use of a local measure of asymmetry as an additional feature, with the aim of improving overall detection performance on a large consecutive sample of screening cases.

Keywords

Proximal Tubule Back Diffusion Lithium Clearance Water Diuresis Fractional Clearance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bookstein, F. L. Principal warps: thin-plate splines and the decomposition of deformations. IEEE PAMI 11,6 (1989), 567–585.CrossRefGoogle Scholar
  2. [2]
    Giger, M. L., Lu, P., Huo, Z., Bick, U., Vyborny, C. J., Schmidt, R. A., Zhang, W., Metz, C. E., Wolverton, D., Nishikawa, R. M., Zouras, W., and Doi, K. Cad in digital mammography: computerized detection and classification of masses. In Digital Mammography (1994), A. G. Gale, S. M. Astley, D. R. Dance, and A. Y. Cairns, Eds., Elsevier, Amsterdam, pp. 281–288.Google Scholar
  3. [3]
    Hlghnam, R. P., Brady, J. M., and Shepstone, B. J. A representation for mammographic image processing. Med Imag Analysis 1 (3 1996), 1–18.CrossRefGoogle Scholar
  4. [4]
    Karssemeuer, N. Automated classification of parenchymal patterns in mammograms. Phys Med Biol 43 (1998), 365–378.CrossRefGoogle Scholar
  5. [5]
    Karssemeuer, N., and te Brake, G. M. Detection of stellate distortions in mammograms. IEEE Trans Med Imag 15 (10 1996), 611–619.CrossRefGoogle Scholar
  6. [6]
    Lau, T. K., and Bischof, W. F. Automated detection of breast tumors using the asymmetry approach. Comp and Biomed Research 24 (1991), 273–295.CrossRefGoogle Scholar
  7. [7]
    Miller, P., and Astley, S. M. Automated detection of mammographic asymmetry using anatomical features. Int. Journal of Pattern Recognition and AI 7, 6 (1992), 1461–1476.CrossRefGoogle Scholar
  8. [8]
    Sallam, M., and Bowyer, K. W. Registering time-sequences of mammograms using a two-dimensional unwarping technique. In Digital Mammography (1994), A. G. Gale, S. M. Astley, D. R. Dance, and A. Y. Cairns, Eds., Elsevier, Amsterdam, pp. 121–131.Google Scholar
  9. [9]
    Smith, J. H., Astley, S. M., Graham, J., and Hufton, A. P. The calibration of grey levels in mammograms. In Digital Mammography (1996), K. Doi, M. L. Giger, R. M. Nishikawa, and R. A. Schmidt, Eds., Elsevier, Amsterdam, pp. 195–200.Google Scholar
  10. [10]
    Suckling, J., Parker, J., Dance, D. R., Astley, S., Hutt, I., Boggis, C. R. M., Ricketts, I., Stamatakis, E., Cerneaz, N., Kok, S. L., Taylor, P., Betal, D., and Savage, J. The mammographie image analysis society digital mammogram database. In Digital Mammography (1994), A. G. Gale, S. M. Astley, D. R. Dance, and A. Y. Cairns, Eds., Elsevier, Amsterdam, pp. 375–378.Google Scholar
  11. [11]
    te Brake, G. M., and Karssemeuer, N. Detection of stellate breast abnormalities. In Digital Mammography (1996), K. Doi, M. L. Giger, R. M. Nishikawa, and R. A. Schmidt, Eds., Elsevier, Amsterdam, pp. 341–346.Google Scholar
  12. [12]
    Yin, F. F., Giger, M. L., Doi, K., Metz, C. E., Vyborny, C. J., and Schmidt, R. A. Computerized detection of masses in digital mammograms: Analysis of bilateral substraction images. Med Phys 18 (1991), 955–963.PubMedCrossRefGoogle Scholar
  13. [13]
    Yin, F. F., Giger, M. L., Vyborny, C. J., Doi, K., and Schmidt, R. A. Comparison of bilateral-substraction and single-image processing techniques in the computerized detection of mammographie masses. Invest Radiol 6 (1993), 473–481.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Nico Karssemeijer
    • 1
  • Guido Te Brake
    • 1
  1. 1.University Hospital Nijmegen Department of RadiologyUniversity of NijmegenThe Netherlands

Personalised recommendations