Advertisement

The Surface Compositions of Triton, Pluto, and Charon

  • Dale P. Cruikshank
  • Ted L. Roush
  • Tobias C. Owen
  • Eric Quirico
  • Catherine De Bergh
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 227)

Abstract

Neptune’s satellite Triton, and the planet-satellite binary Pluto and Charon, are the most distant planetary bodies on which ices have been directly detected. Triton and Pluto have very similar dimensions and mean densities, suggesting a similar or common origin. Through Earth-based spectroscopic observations in the near-infrared, solid N 2, CH 4, H 2 O, and CO have been found on both bodies, with the additional molecule CO 2 on Triton. N 2 dominates both surfaces, although the coverage is not spatially uniform. On Triton, the CH 2 and CO are mostly or entirely frozen in the N 2 matrix, while CO 2 may be spatially segregated. On Pluto, some CH 4 and the CO are frozen in the N 2 matrix, but there is evidence for additional CH 2 in a pure state, perhaps lying as a lag deposit on a subsurface layer of N 2. Despite their compositional and dimensional similarities, Pluto and Triton are quite different from one another in detail. Additional hydrocarbons and other volatile ices have been sought spectroscopically but have not yet been detected. The only molecule identified on Pluto’s satellite Charon is solid H 2 O, but the spectroscopic data are of low precision and admit the presence of other ices such as CH 4.

Keywords

Optical Constant Spectral Reflectance Kuiper Belt Outer Solar System Intimate Mixture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allamandola, L. J. (1984) Absorption and Emission Characteristics of Interstellar Dust. In Kessler, M. F. and Phillips, J. P. (eds.) Galactic and Extragalactic Infrared Spectroscopy, Reidel, Dordrecht, 5–35CrossRefGoogle Scholar
  2. Barker, E. S., Cochran, W. D., and Cochran, A. L. (1980) Spectrophotometry of Pluto from 3500 to 7350 Å, Icarus, 44, 43–52ADSCrossRefGoogle Scholar
  3. Bohn, R. B., Sandford, S. A., AUamandola, L. J. and Cruikshank, D. P. (1994) Infrared spectroscopy of Triton and Pluto ice analogs: The case for saturated hydrocarbons, Icarus, 111, 151–173ADSCrossRefGoogle Scholar
  4. Broadfoot, A. L. and the Voyager UVS Team (1989) Ultraviolet spectrometer observations of Neptune and Triton, Science, 246, 1459–1466ADSCrossRefGoogle Scholar
  5. Brown, G. N., Jr. and Ziegler, W. T. (1979) Vapor pressure and heats of vaporization and sublimation of liquids and solids of interest in cryogenics below 1-atm pressure. In Timmerhaus, K. D. and Snyder, H. A. (eds.) Advances in Cryogenic Engineering, 25, Plenum Press, New York, pp. 662–670Google Scholar
  6. Brown, R. H., and Cruikshank, D. P. (1997) Determination of the composition and state of icy surfaces in the outer solar system. Ann. Rev. Earth Planet. sci., 25, 243–277ADSCrossRefGoogle Scholar
  7. Brown, R. H., Cruikshank, D. P., Veverka, J., Helfenstein, P. and Eluszkiewicz, J. (1995) Surface composition and photometric properties of Triton. In Cruikshank, D. P. (ed.) Neptune and Triton, Univ. of Arizona Press, Tucson, pp 991–1030Google Scholar
  8. Buie, M. W. (1984) Lightcurve CCD Spectrophotometry of Pluto, Ph.D. dissertation, Univ. of Arizona, 102 ppGoogle Scholar
  9. Buie, M. W. and Fink, U. (1987) Methane absorption variations in the spectrum of Pluto, Icarus, 70, 483–498ADSCrossRefGoogle Scholar
  10. Buie, M. W., Cruikshank, D. P., Lebofsky, L. A. and Tedesco, E. F. (1987) Water frost on Charon, Nature, 329, 522–523ADSCrossRefGoogle Scholar
  11. Buie, M. W., Tholen, D. J., and Wasserman, L. H. (1997) Separate lightcurves of Pluto and Charon, Icarus, 125, 233–244ADSCrossRefGoogle Scholar
  12. Chandrasekhar, S. (1960) Radiative Transfer, Dover, New York, 393ppGoogle Scholar
  13. Christy, J. W. and Harrington, R. S. (1978) The satellite of Pluto, A3, 83, 1005–1008ADSGoogle Scholar
  14. Cruikshank, D. P. (1997) Organic matter in the outer solar system: From the meteorites to the Kuiper Belt. In Pendleton, Y. J., and Tielens, A. G. G. M. (eds.) From Stardust to Planetesimals, Astron. Soc. Pacific Conf. Ser., 315–333Google Scholar
  15. Cruikshank, D. P. and Apt, J. (1984) Methane on Triton: Physical state and distribution, Icarus, 58, 306–311ADSCrossRefGoogle Scholar
  16. Cruikshank, D. P., and Brown, R. H. (1986) Satellites of Uranus and Neptune, and the Pluto-Charon system. In Burns, J. A. and Matthews, M. S. (eds.), Satellites Univ. of Arizona Press, 836–873Google Scholar
  17. Cruikshank, D. P., Brown, R. H. and Clark, R. N. (1984) Nitrogen on Triton, Icarus, 58, 293–305ADSCrossRefGoogle Scholar
  18. Cruikshank, D. P., Pilcher, C. B. and Morrison, D. (1976) Pluto: Evidence for methane ice, Science, 194, 835–387ADSGoogle Scholar
  19. Cruikshank, D. P., Roush, T. L., Moore, J., Sykes, M., Owen, T. C, Brown, R. H. and Tryka, K. A. (1997a) The surfaces of Pluto and Charon. In Stern, S. A. and Tholen, D. J. (eds.) Pluto and Charon, Univ. of Arizona Press, Tucson (in press)Google Scholar
  20. Cruikshank, D. P., Roush, T. L., Owen, T. C, de Bergh, C, Bartholomew, M. J., Geballe, T.R., Schmitt, B., and Quirico, E. (1997b) Water ice on Triton, in preparationGoogle Scholar
  21. Cruikshank, D. P., Roush, T. L., Owen, T. C, Geballe, T. R., de Bergh, C, Schmitt, B., Brown, R. H. and Bartholomew, M. J. (1993) Ices on the surface of Triton, Science, 261, 742–745ADSCrossRefGoogle Scholar
  22. Cruikshank, D. P. and Silvaggio, P. M. (1979) Triton: A satellite with an atmosphere, ApJ, 233, 1016–1020ADSCrossRefGoogle Scholar
  23. Cruikshank, D. P. and Silvaggio, P. M. (1980) The surface and atmosphere of Pluto, Icarus, 41, 96–102ADSCrossRefGoogle Scholar
  24. Duxbury, N. S. and Brown, R. H. (1993) The phase composition of Triton’s permanent polar caps, Science, 261, 748–751ADSCrossRefGoogle Scholar
  25. Elliot, J. E., Dunham, E. W., Bosh, A. S., Slivan, S. M., Young, L. A., Wasserman, L. H. and Millis, R. L. (1989) Pluto’s atmosphere, Icarus, 77, 148–170ADSCrossRefGoogle Scholar
  26. Fink, U. and DiSanti, M. A. (1987) The separate spectra of Pluto and its satellite Charon, A3, 95, 229–236ADSGoogle Scholar
  27. Green, J. R., Brown, R. H., Cruikshank, D. P. and Anicich, V. (1991) The absorption coefficient of nitrogen with application to Triton, Bull. Amer. Astron. Soc, 23, 1208 (abstract)ADSGoogle Scholar
  28. Grundy, W. M. (1995) Methane and nitrogen ices on Pluto and Triton: A combined laboratory and telescope investigation. Thesis, Univ. of Arizona, Tucson, 125 ppGoogle Scholar
  29. Grundy, W. M., and Fink, U. (1993) CCD spectra of Pluto from 1982 to present, Bull. Am. Astron. Soc, 25, 1131 (abstract)ADSGoogle Scholar
  30. Grundy, W. M., and Fink, U. (1996) Synoptic CCD spectrophotometry of Pluto over the past 15 years, Icarus, 124, 329–343ADSCrossRefGoogle Scholar
  31. Grundy, W. M., Schmitt, B. and Quirico, E. (1993a) Temperature dependent absorption spectra of CH4 and N2 ices, Bull. Am. Astron. Soc, 25, 1132ADSGoogle Scholar
  32. Grundy, W. M., Schmitt, B. and Quirico, E. (1993b) The temperature dependent spectra of alpha and beta nitrogen ice with application to Triton, Icarus, 105, 254–258ADSCrossRefGoogle Scholar
  33. Gurrola, E. M. (1995) Interpretation of radar data from the icy galilean satellites and Triton. Dissertation, Stanford UniversityGoogle Scholar
  34. Hansen, J. E. and Travis L. D. (1974) Light scattering in planetary atmospheres, Space sci. Rev., 16, 527–610ADSCrossRefGoogle Scholar
  35. Hapke, B. W. (1981) Bidirectional reflectance spectroscopy 1. Theory, J. Geophys. Res., 86, 3039–3054ADSCrossRefGoogle Scholar
  36. Hapke, B. W. (1984) Bidirectional reflectance spectroscopy 3. Correction for macroscopic roughness, Icarus, 59, 41–59ADSCrossRefGoogle Scholar
  37. Hapke, B. W. (1986) Bidirectional reflectance spectroscopy 4. The extinction coefficient and the opposition effect, Icarus, 67, 264–280ADSCrossRefGoogle Scholar
  38. Hapke, B. W. (1993a) Combined theory of reflectance and emittance spectroscopy. In Pieters, C. M. and Englert, P. A. J. (eds.) Remote Geochemical Analysis: Elemental and Mineralogical Composition, Cambridge Univ. Press, New York, pp 31–42Google Scholar
  39. Hapke, B. W. (1993b) Reflectance and Emittance Spectroscopy, Cambridge Univ. Press, New York, 455 ppCrossRefGoogle Scholar
  40. Herbert, F. and Sandel, B. R. (1991) CH4 and haze in Triton’s lower atmosphere, J. Geophys. Res., 96, 19241–19252ADSCrossRefGoogle Scholar
  41. Hillier, J., Veverka, J., Helfenstein, P., and Lee, P. (1994) Photometric diversity of terrains on Triton, Icarus, 109, 296–312ADSCrossRefGoogle Scholar
  42. Hudgins, D. M., Sandford, S. A., Allamandola, L. J. and Tielens A. G. G. M. (1993) Mid-and far-infrared spectroscopy of ices: Optical constants and integrated absorbances, Apj Sup., 86, 713–870ADSCrossRefGoogle Scholar
  43. Jenniskens, P., and Blake, D. F. (1994) Structural transitions in amorphous water ice and astrophysical implications, Science, 265, 753–756ADSCrossRefGoogle Scholar
  44. Jenniskens, P., and Blake, D. F. (1996) Crystallization of amorphous water ice in the solar system. ApJ, 473, 1104–1113ADSCrossRefGoogle Scholar
  45. Jewitt, D. C. and Luu, J. X. (1995) The solar system beyond Neptune, AJ, 109, 1867–1876ADSCrossRefGoogle Scholar
  46. Johnson, R. E. (1990) Energetic Charged-Particle Interactions with Atmospheres and Surfaces, Springer, Berlin, 232 ppCrossRefGoogle Scholar
  47. Krasnopolsky, V. K., and Cruikshank, D. P. (1995) Photochemistry of Triton’s atmosphere and ionosphere,J. Geophys. Res., 100, 21,271–21,286ADSCrossRefGoogle Scholar
  48. Lanzerotti, L. J., Brown, W. L., Maclennan, C. G., Cheng, A. F., Krimigis, S. M., and Johnson, R. E. (1987) Effects of charged particles on the surfaces of the satellites of Uranus, J. Geophys. Res., 92, 14,949–14,957ADSCrossRefGoogle Scholar
  49. Laufer, D., Kochavi, E. and Bar-Nun, A. (1987) Structure and dynamics of amorphous water ice,Phys. Rev. B., 36, 9219–9227ADSCrossRefGoogle Scholar
  50. Löwen, H. W., Bier, K. D. and Jodl, H. J. (1990) Vibron-phonon excitations in the molecular crystals N2, O2, and CO by Fourier transform infrared and Raman studies, J. Chem. Phys., 93, 8565–8575ADSCrossRefGoogle Scholar
  51. Lunine, J. I., Atreya, S. K. and Pollack, J. B. (1989) Present state and chemical evolution of the atmospheres of Titan, Triton and Pluto. In Atreya, S. K., Pollack, J. B., and Matthews, M. S. (eds.) Origin and Evolution of Planetary and Satellite Atmospheres, Univ. of Arizona Press, Tucson, 605–665Google Scholar
  52. Marcialis, R. L., Rieke, G. H. and Lebofsky, L. A. (1987) The surface composition of Charon: Tentative identification of water ice, Science, 237, 1349–1351Google Scholar
  53. Marcialis, R. L. and Lebofsky, L. A. (1991) CVF spectrophotometry of Pluto: Correlation of composition with albedo,Icarus, 89, 255–263ADSCrossRefGoogle Scholar
  54. Marcialis, R. L., Lebofsky, L. A., DiSanti, M. A., Fink, U., Tedesco, E. F. and Africano, J. (1992) The albedos of Pluto and Charon: Wavelength dependence, AJ, 103, 1389–1394ADSCrossRefGoogle Scholar
  55. McKinnon, W. B., Lunine, J. I. and Banfield, D. (1995) Origin and evolution of Triton. In Cruikshank, D.P. (ed.) Neptune and Triton, Univ. of Arizona Press, Tucson, 807–877Google Scholar
  56. Owen, T. C, Roush, T. L., Cruikshank, D. P., Elliot, J. L., Young, L. A., de Bergh, C, Schmitt, B., Geballe, T. R., Brown, R. H. and Bartholomew, M. J. (1993) Surface ices and the atmospheric composition of Pluto,Science, 261, 745–748ADSCrossRefGoogle Scholar
  57. Pearl, J., Ngoh, M, Ospina, M. and Khanna R. (1991) Optical constants of solid methane and ethane from 10,000 to 450 −1,J. Geophys. Res., 96, 17,477–17,482ADSCrossRefGoogle Scholar
  58. Quirico, E. (1995) Etudes spectroscopiques proche infrarouges de solides moléculaires. Application à l’étude des surfaces glacées de Triton et Pluton. Thesis, Université Joseph Fourier-Grenoble I, 298 ppGoogle Scholar
  59. Quirico, E. and Schmitt, B. (1997) Near infrared spectroscopy of simple hydrocarbons and carbon oxides diluted in solid N2 and as pure ices: Implications for Triton and Pluto,Icarus (in press, June issue)Google Scholar
  60. Quirico, E., Schmitt, B., Bini, R. and Salvi, P. R. (1996) Spectroscopy of some ices of astrophysical interest: SO2, N2 and N2:CH4 mixtures, Planet. Space sci., 44, 973–986ADSCrossRefGoogle Scholar
  61. Roush, T. (1994) Charon: More than water ice? Icarus, 108, 243–254ADSCrossRefGoogle Scholar
  62. Roush, T., Pollack, J. B., Cruikshank, J. B., Young, E. F. and Bartholomew, M. J. (1994) Geometric albedo of Charon,Bull. Amer. Astron. Soc., 26, 1169 (abstract)ADSGoogle Scholar
  63. Roush, T., Cruikshank, D. P., Pollack, J. B., Young, E. F. and Bartholomew, M. J. (1996) Near-infrared geometric albedos of Charon and Pluto: Constraints on Charon’s surface composition,Icarus, 119, 214–218ADSCrossRefGoogle Scholar
  64. Sagan, C. and Khare, B. N. (1979) Tholins: Organic chemistry of interstellar grains and gas,Nature, 277, 102–107ADSCrossRefGoogle Scholar
  65. Sagan, C. and Thompson, W. R. (1984) Production and condensation of organic gases in the atmosphere of Titan,Icarus, 59, 133–161ADSCrossRefGoogle Scholar
  66. Schmitt, B. and Quirico, E. (1992) Laboratory data on near-infrared spectra of ices of planetary interest,Bull. Amer. Astron. Soc.,24, 968 (abstract)ADSGoogle Scholar
  67. Schmitt, B., Quirico, E. and Lellouch, E. (1992) Near infrared spectra of potential solids at the surface of Titan,Proc. Symp. Titan, ESA SP-338, 383–388Google Scholar
  68. Schmitt, B., Quirico, E., de Bergh, C, Owen, T. C. and Cruikshank D. P. (1993) The near-infrared spectra of Triton and Pluto: A laboratory analysis of the methane bands, Bull. Am. Astron. Soc, 25, 1129 (abstract)ADSGoogle Scholar
  69. Schmitt, B., Douté, S., Quirico, E., Benchkoura, A., de Bergh, C, Owen, T. C. and Cruikshank, D. P. (1994) The state and composition of the surface of Pluto: Laboratory experiments and numerical modeling, Bull. Amer. Astron. Soc, 26, 1170 (abstract)ADSGoogle Scholar
  70. Sill, G. T., Fink, U. and Ferraro J. R. (1980) Absorption coefficients of solid N H3 from 50 to 7000 cm−1, J. Opt. Soc. Am., 70, 724–739ADSCrossRefGoogle Scholar
  71. Smith, B. A. and the Voyager ISS Team, (1989) Voyager 2 at Neptune: Imaging science results, Science, 246, 1422–1449ADSCrossRefGoogle Scholar
  72. Smith, E. V. P., and Gottlieb, D. M. (1974) Solar flux and its variations, Space sci. Rev., 16, 771–802ADSGoogle Scholar
  73. Soifer, B. T., Neugebauer, G. and Matthews, K. (1980) The 1.5–2.5 μm spectrum of Pluto, AJ, 85, 166–167ADSCrossRefGoogle Scholar
  74. Spencer, J. R., Buie, M. W. and Bjoraker, G. L. (1990) Solid methane on Triton and Pluto: 3-4 micron spectrophotometry, Icarus, 88, 491–496ADSCrossRefGoogle Scholar
  75. Stansberry, J. A., Lunine, J. I., Hubbard, W. B., Yelle, R. V., and Hunten, D. M. (1994) Mirages and the nature of Pluto’s atmosphere, Icarus, 111, 503–513ADSCrossRefGoogle Scholar
  76. Stansberry, J. A., Pisano, D. J., and Yelle, R. V. (1995) The emissivity of nitrogen ice on Triton and Pluto, Planet. Space sci., 44, 945–955ADSCrossRefGoogle Scholar
  77. Stern. S. A. (1993) Properties and tentative identification of the strongly UV-absorbing surface constituent on Triton, Icarus, 102, 170–173ADSCrossRefGoogle Scholar
  78. Stone, E. C. and Miner, E. D. (1989) The Voyager 2 encounter with the Neptunian system, Science, 246, 1417–1421ADSCrossRefGoogle Scholar
  79. Strobel, D. F., and Summers, M. E. (1995) Triton’s upper atmosphere and ionosphere. In Cruikshank, D. P. (ed.) Neptune and Triton, Univ. of Arizona Press, Tucson, 1107–1148Google Scholar
  80. Strazzulla, G., and Johnson, R. E. (1991) Irradiation effects on comets and cometary debris. In Newburn, R. L., Jr., Neugebauer, M, and Rahe, J. (eds.) Comets in the Post-Halley Era, Kluwer, Dordrecht, 243–275CrossRefGoogle Scholar
  81. Thompson, W. R., Murray, B. G. J. P. T., Khare, B. N., and Sagan, C. (1987) Coloration and darkening of methane clathrate and other ices by charged particle irradiation: Applications to the outer solar system, J. Geophys. Res., 92, 14,933–14,947ADSCrossRefGoogle Scholar
  82. Thompson, W. R. and Sagan, C. (1990) Color and chemistry on Triton, Science, 250, 415–418ADSCrossRefGoogle Scholar
  83. Trafton, L. (1984) Large seasonal variations in Triton’s atmosphere, Icarus, 58, 312–324ADSCrossRefGoogle Scholar
  84. Tryka, K. A., Brown, R. H., Anicich, V., Cruikshank, D. P. and Owen, T. C. (1993) Spectroscopic determination of the phase composition and temperature of nitrogen ice on Triton, Science, 261, 751–754ADSCrossRefGoogle Scholar
  85. Tryka, K. A., Brown, R. H., Cruikshank, D. P., Owen, T. C, Geballe, T. R. and De-Bergh, C. (1994) Temperature of nitrogen ice on Pluto and its implications for flux measurements, Icarus, 112, 513–527ADSCrossRefGoogle Scholar
  86. Tyler, G. L., and the Voyager Radio Science Team (1989) Voyager radio science observations of Neptune and Triton, Science, 246, 1466–1473ADSCrossRefGoogle Scholar
  87. Van Thiel, M., Decker, E. D. and Pimentel G. C. (1957) Infrared studies of hydrogen bonding of water by the matrix isolation technique, J. Chem. Phys., 27, 486–490ADSCrossRefGoogle Scholar
  88. Warren, S.G. (1984) Optical constants of ice from the ultraviolet to the microwave, Appl. Opt., 23, 1206–1225ADSCrossRefGoogle Scholar
  89. Weissman, P. R. (1995) The Kuiper Belt, Ann. Rev. Astron. Astrophys., 33, 327–357ADSCrossRefGoogle Scholar
  90. Young, E. F. and Binzel, R. P. (1994) A new determination of radii and limb parameters for Pluto and Charon from mutual event lightcurves, Icarus, 108, 219–224ADSCrossRefGoogle Scholar
  91. Young, L. A. (1994) Bulk Properties and Atmospheric Structure of Pluto and Charon, Ph.D. dissertation, Massachusetts Inst. of Technology, 124 ppGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Dale P. Cruikshank
    • 1
  • Ted L. Roush
    • 1
    • 2
  • Tobias C. Owen
    • 3
  • Eric Quirico
    • 4
  • Catherine De Bergh
    • 5
  1. 1.NASA Ames Research CenterMoffett FieldUSA
  2. 2.San Francisco State Univ.USA
  3. 3.Institute for AstronomyUniversity of HawaiiHonoluluUSA
  4. 4.Laboratoire de Glaciologie et Geophysique de l’EnvironnementDomaine UniversitaireSaint-Martin-d’HèresFrance
  5. 5.Observatoire de ParisMeudonFrance

Personalised recommendations