Advertisement

The Golden Section and Modern Harmony Mathematics

  • Alexey Stakhov

Abstract

In recent years, the scientific community has shown renewed interest in the Fibonacci numbers and in the Golden Section. The American-based Fibonacci Association is largely devoted to number theory [11,29] while the Slavonic group of the Fibonacci scientists is pursuing applications in philosophy, architecture, biology, computer science, and physics as reported in annual international seminars entitled “The Golden Section and Problems of the System Harmony” since 1992. This article discusses contemporary investigations of the Slavonic Fibonacci scientists with representative references [2–4,10,13–28,30,31].

Keywords

Number System Golden Section Fibonacci Number Lucas Number Platonic Solid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bergman, G. “A Number System with an Irrational Base.” Mathematics Magazine, Vol. 31 (1957): pp. 98–119.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    Bodnar, O.Y. “Geometria filotaksisa.” Doclady Academij nauk Ukrainy, Vol. 9 (1992): pp. 8–14. (The Geometry of Phyllotaxis).Google Scholar
  3. [3]
    Bodnar, O.Y. Zolotoe sechenie i neevclidova geometria v prirode i iskusstve. Lvov, Svit, 1994. (The Golden Section and Non-Euclidean Geometry in Nature and Art).Google Scholar
  4. [4]
    Butusov, K.P. “Zolotoe sechenie v colnechnoy sisteme.” Astronomia i nebesnaya mechanika. Series: Problemy issledovania vselennoy, Vol. 7 (1978): pp. 475–500. (The Golden Section in the Solar System).Google Scholar
  5. [5]
    Danilov, Y.A. and Smorodinskij, Y.A. “Iohann Kepler: ot “Misterii” do “Gamonii”.” Uspekhi fizicheskikh nauk, Vol. 109 (1973): pp. 175–209. (Iohann Kepler: from Mystery to Harmony).CrossRefGoogle Scholar
  6. [6]
    Davydov, E. S. Naimenshie grupy chisel dlja abrazonvania naturalnych riadov. S-Peterburg, 1903. (The Least Number Group for Representation of the Natural Numbers.)Google Scholar
  7. [7]
    Depman, I. J. Istoria arifmetiki. Moscow: Fizmatghiz, 1950. (The History of Arithmetics.)Google Scholar
  8. [8]
    Gartz, V. F. Luchshava sistema vesovych gir’ S-Peterburg, 1910. (The Best System of the Standard Weights).Google Scholar
  9. [9]
    Gratea, D. “Kvazikristally.” Uspekhi fiziceskikh nauk, Vol. 2 (1988): pp. 347–363. (Quasi-crystals).Google Scholar
  10. [10]
    Gregzdelskij, J. Energetvczno-geometrvcznv kod przygodv. Warszava, 1986. (Energygeometric Code of Nature).Google Scholar
  11. [11]
    Hoggatt, Jr. V. E. Fibonacci & Lucas Numbers. Boston: Houghton Mifflin Company, 1972.Google Scholar
  12. [12]
    Klein, F. Leksii ob ikosaedre i reshenii uravnenii pjatoi stepeni. Moscow: Nauka, 1989. (Lectures on the Icosahedron and the Solution of the 5th Power Equations).Google Scholar
  13. [13]
    Korobko, V. I. Zakonomernosti zolotoi proportsii v stroitelnoi mekhanike. Stavropol, 1991. (Regularities of the Golden Proportion in Building Mechanics).Google Scholar
  14. [14]
    Petrunenko, V. V. “Volnovye kratnosti zolotogo sechenia vo vnutriyadernom vzaimodeystvii nuklonov.” Cicly prirody i obsichesiva, Vol. 3.4 (1995): pp. 171–175. (The Wave Multiplicity of the golden Section for Intranuclear Nucleon Interaction).Google Scholar
  15. [15]
    Pomerantseva, N. A. Esteticheskije osnovy iskusstva Drevnego Eehjpta. Moscow, Iskusstvo, 1985. (Aesthetic Foundations of Ancient Egyptian Art).Google Scholar
  16. [16]
    Petukhov, S. V. Biomekhanika. bionika i simmetriia. Moscow: Nauka, 1981. (Biomechanics, Bionics and Symmetry).Google Scholar
  17. [17]
    Radjuk, M. S. “Zolotaja proportsija v structure khloroplastov vysshikh rastenii.” Isvestia Academii Nauk SSSR, Seria: Biologiya, Vol. 5 (1987): pp. 774–777. (The Golden Section in the Structure of the Higher Plant Chloroplats).Google Scholar
  18. [18]
    Shevelev, M.S., Marutajev, M.A. and Shmeljov, M.P. Zolotoie sechenije. Tri vzgliada na prirodu earmonii. Moscow: Stroiizdat, 1990. (The Golden Section. Three Approaches to Harmony in Nature).Google Scholar
  19. [19]
    Shmelijov, I.P. Fenomen Drevnego Eghipta. Minsk: University RITS, 1993. (Pheonomenon of Ancient Egypt).Google Scholar
  20. [20]
    Sokolov, A.A. and Sokolov, Y.A. “Kombinatornyje sootnoshenija v spektre EEG.” Bjulleien’ experimentalnoi biologhii i meditsiny, Vol. 7 (1975). (Combinatorial Relations in the Spectrum of Encephalograms).Google Scholar
  21. [21]
    Soroko, E.M. Structurnaia garmonija sistem. Minsk: Nauka i Tekhnika, 1984. (Structural harmony of Systems).Google Scholar
  22. [22]
    Stakhov, D.A. Problemo-orientirovannve fibonachievye sistemy schislenia dlia specializirovannych computerov (PhD dissertation). Vinnitsa: 1992. (Problemoriented Fibonacci Number Systems for Special Computers).Google Scholar
  23. [23]
    Stakhov, A.P. Vvedeniie v algoritmiceskuju teoriju izmerenija. Moscow: Soviet Radio, 1977. (Introduction to Algorithmic Measurement Theory).Google Scholar
  24. [24]
    Stakhov, A.P. Kody zolotoi proportsii. Moscow: Radio i Svjaz, 1984. (Codes of the golden Proportion).Google Scholar
  25. [25]
    Stakhov, A.P. “The golden Section in Measurement Theory.” Computers & Mathematics with Applications, Vol. 4.5 (1989): pp. 613–638.MathSciNetCrossRefGoogle Scholar
  26. [26]
    Stakhov, A.P. “Zolotyi pereriz i nauka pro garmoniju system.” Visnyk Akademii nauk Ukrainy, Vol. 12 (1991): pp. 8–15. (The Golden Section and the Science of System Harmony).Google Scholar
  27. [27]
    Stakhov, A.P. and Tkacheno, I.S. “Ghiperboliceskaja trigonometrija Fibonacci.” Doklady Academii nauk Ukrainy, Vol. 7 (1993): pp. 9–14. (Hyperbolic Fibonacci Trigonometry).Google Scholar
  28. [28]
    Stakhov, A.P. “Algoritmicheskaya teoria izmerenia: novyi vzgljad na teoriju pozicionnych sistem schislenia i komputernuju arifmetiku.” Upravljajuschie Sysiemy i Mashiny, Vol. 4.5 (1994): pp. 38–52. (Algorithmic Measurement Theory: New Approach to Positional Number System Theory and Computer Arithmetic).Google Scholar
  29. [29]
    Vajda, S. Fibonacci & Lucas Numbers, and the Golden Section. New York: Wiley, 1989.zbMATHGoogle Scholar
  30. [30]
    Vasjutinsky, N.A. Zolotaja proportsija. Moscow: Molodaja Gvardija, 1990. (The Golden Proportion).Google Scholar
  31. [31]
    Vorobjov, N.N. Chisla Fibonacci. Moscow: 1978. (Fibonacci Numbers).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Alexey Stakhov

There are no affiliations available

Personalised recommendations