Skip to main content

Part of the book series: Immunology and Medicine Series ((IMME,volume 26))

Abstract

FcγR provide the link between cellular and humoral aspects of the immune cascade. Their structural diversity presents a rich framework within which one can understand how immunoglobulin complexes activate a broad range of cell programs relevant to autoimmunity, cancer and microbial host defence. A fundamental assumption is that different receptor structures have different biological functions. Such differences in structure among FcγR dictate differential signalling potentials and biologic functions and provide a diversity of FcγR within a given individual. Inherited or acquired differences in FcγR structure, expression, or function provide the basis for differences in FcγR function between individuals. Allelic variants of FcγR which confer distinct functional capacities to effector cells are a mechanism for inherited diffe rences in disease susceptibility. Originally, allelic variants of FcγR were identified by phenotypic differences, such as binding to specific mAbs or IgG subclasses. More recently, allele-specific PCR, allele-specific oligomer hybridization of PCR products, SSCP, and direct automated sequencing have provided precise definition of each variant allowing characterization of the corresponding functional phenotype. Clinical significance of allelic polymorphisms of FcγR is the focus of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tax, WJM, Willems HW, Reekers PPM, Capel PJA, Koene RAP. Polymorphism in mitogenic effect of IgG1 monoclonal antibodies against T3 antigen on human T cells. Nature. 1983; 304: 445–7.

    Article  PubMed  CAS  Google Scholar 

  2. Tax WJ, Tamboer WP, Jacobs CW, Frenken LA, Koene RA. 1997. Role of polymorphic Fc receptor FcγRIIa in cytokine release and adverse effects of murine IgG1 anti-CD3/T cell receptor antibody (WT31). Transplantation. 1997; 63: 106–12.

    Article  PubMed  CAS  Google Scholar 

  3. Warmerdam PAM, van de Winkel JGJ, Vlug A, Westerdal NAC, Capel PJAA Single amino acid in the second Ig-like domain of the human Fcγreceptor II is critical in human IgG2 binding. J Immunol 1991; 147: 1338–43.

    PubMed  CAS  Google Scholar 

  4. Clark MR, Stuart SG, Kimberly RP, Ory PA, Goldstein IM. A single amino acid distinguishes the high-responder from low-responder form of Fc receptor II on human monocytes. Eur J Immunol. 1991; 21: 1911–16.

    Article  PubMed  CAS  Google Scholar 

  5. Warmerdam PAM, van de Winkel JGJ, Gosselin EJ, Capel PJA. Molecular basis for a polymorphism of human Fcyreceptor II (CD32). J Exp Med. 1990; 172: 19–25.

    Article  PubMed  CAS  Google Scholar 

  6. Tate BJ, Witort E, McKenzie IFC, Hogarth PM. Expression of the high responder/non-responder human FcγRII. Analysis by PCR and transfection into FcR-COS cells. Immunol Cell Biol. 1992; 70: 79–87.

    Article  PubMed  CAS  Google Scholar 

  7. Salmon JE, Edberg JC, Brogle NL, Kimberly RP. Allelic polymorphisms of human Fcγreceptor IIA and Fcγreceptor IIIB. Independent mechanisms for differences in human phagocyte function. J Clin Invest. 1992; 89: 1274–8.

    Article  PubMed  CAS  Google Scholar 

  8. Parren PWHI, Warmerdam PAM, Boeije LCM et al. On the interaction of IgG subclasses with the low affinity FcγRIIA (CD32) on human monocytes, neutrophils, and platelets. Analysis of a functional polymorphism to human IgG2. J Clin Invest. 1992; 90: 1537–46.

    Article  PubMed  CAS  Google Scholar 

  9. Sanders LA, Feldman RG, Voorhorst-Ogink MM et al. Human immunoglobulin G (IgG) Fc receptorIIa(CD32) polymorphism and IgG2-mediated bacterial phagocytosis by neutrophils. Infect Immun. 1995; 63: 73–81.

    PubMed  CAS  Google Scholar 

  10. Bredius RG, de Vries CE, Troelstra A et al. Phagocytosis of Staphylococcus aureus and Haemophilus influenzae lype B opsonized with polyclonal human IgG1 and IgG2 antibodies. Functional hFcy Rlla polymorphism to IgG2. J Immunol. 1993; 151: 1463–72.

    PubMed  CAS  Google Scholar 

  11. Salmon JE, Millard SS, Schachter LA et al. FcγRIIA alleles are heritable risk factors for lupus nepritis in African Americans. J Clin Invest. 1996; 97: 1348–54.

    Article  PubMed  CAS  Google Scholar 

  12. Sanders LA, van der Winkel JG, Rijkers GT et al. Fcγreceptor IIa (CD32) heterogeneity in patients with recurrent bacterial respiratory tract infections. J Infect Dis. 1994; 170: 854–61.

    Article  PubMed  CAS  Google Scholar 

  13. Bredius RG, Derkx BH, Fijen CA et al. Fcγreceptor IIa (CD32) polymorphism in fulminant meningococcal septic shock in children. J Infect Dis. 1994; 170: 848–53.

    Article  PubMed  CAS  Google Scholar 

  14. Yee AMF, Ng SC, Sobel RE, Salmon JE. FcγRIIA polymorphism as a risk factor for invasive pneumococcal infections in systemic lupus erythematosus. Arthritis Rheum. 1997; 40: 1180–2.

    Article  PubMed  CAS  Google Scholar 

  15. Abo T, Tilden AB, Balch CM, Kumagai K, Troup GM, Cooper MD. Ethnic differences in the lymphocyte proliferative response induced by a murine IgG antibody, Leu-4, to the T3 molecule. J Exp Med. 1984; 160: 303–9.

    Article  CAS  Google Scholar 

  16. Reilly AF, Norris CF, Surrey S et al. Genetic diversity in human Fc receptor for immunoglobulin G: Fcγreceptor IIA ligand binding polymorphism. Clin Diag Lab Immunol. 1994; 1: 640–4.

    CAS  Google Scholar 

  17. Osborne JM, Chacko GW, Brandt JT, Anderson CL. Ethnic variation in frequency of an allelic polymorphism of human FcγRIIA determined with allele specific oligonucleotide probes. J Immunol Meth. 1994; 173: 207–17.

    Article  CAS  Google Scholar 

  18. Musser JM, Kroll JS, Granoff DM et al. Global genetic structure and molecular epidemiology of encapsulated Haemophilus influenzae. Rev Infect Dis. 1990; 12: 75–111.

    Article  PubMed  CAS  Google Scholar 

  19. Sammaritano LR, Ng S, Sobel R et al. Anticardiolipin Immunoglobulin G subclasses: association of IgG2 with arterial and/or venous thrombosis. Arthritis Rheum. 1997;in press.

    Google Scholar 

  20. Brandt JF, Osborne JM, Chacko G, Anderson CL. The role of FcγRIIa phenotype in heparin-induced thrombocytopenia. Thromb Haemost. 1995; 74: 1564.

    Google Scholar 

  21. Burgess JK, Lindeman R, Chesterman CN, Chong BH. Single amino acid mutation of Fcγreceptor is associated with the development of heparin-induced thrombocytopenia. Br J Haematol. 1995; 91: 761–6.

    Article  PubMed  CAS  Google Scholar 

  22. Arepally G, McKenzie SE, Jiang XM, Poncz M, Cines DB. FcγRIIA H/R 131 polymorphism, subclass-specific IgG anti-heparin/platelet factor 4 antibodies and clinical course in patients with heparin-induced thrombocytopenia and thrombosis. Blood. 1997; 89: 370–5.

    PubMed  CAS  Google Scholar 

  23. Frank MM, Hamburger MI, Lawley TJ, Kimberly RP, Plotz, PH. Defective reticuloendothelial system Fc-receptor function in systemic lupus erythematosus. N Engl J Med. 1979; 300: 518–23.

    Article  PubMed  CAS  Google Scholar 

  24. Parris TM, Kimberly RP, Inman RD, McDougal JS, Gibofsky A, Christian CL. Defective Fc receptor-mediated function of the mononuclear phagocyte system in lupus nephritis. Ann Int Med. 1982; 97: 526–32.

    PubMed  CAS  Google Scholar 

  25. Salmon JE, Kimberly RP, Gibofsky A, Fotino M. Defective mononuclear phagocyte function in systemic lupus erythematosus: Dissociation of Fc receptor-ligand binding and internalization. J Immunol. 1984; 133: 2525–31.

    PubMed  CAS  Google Scholar 

  26. Wisnieski JJ, Jones SM. Comparison of autoantibodies to the collagen-like region of Clq in hypocomplementemic urticarial vasculitis syndrome and systemic lupus erythematosus. J Immunol. 1992; 148: 1396–403.

    PubMed  CAS  Google Scholar 

  27. Prada AE, Strife CF. IgG subclass restriction of autoantibody to solid-phase Clq in membrano-proliferative and lupus glomerulonephritis. Clin Immunol Immunopathol. 1992; 63: 84–88.

    Article  PubMed  CAS  Google Scholar 

  28. Coremans IEM, Daha MR, van der Voort EAM, Sigertt CEH, Breedveld FC. Subclass distribution of IgA and IgG antibodies against Clq in patients with rheumatic diseases. Scand J Immunol. 1995; 41: 391–7.

    Article  PubMed  CAS  Google Scholar 

  29. Haseley LA, Wisnieski JJ, Denburg MR et al. Antibodies to Clq in systemic lupus erythematosus: characteristics and relation to FcγRIIA alleles. Kidney Int. 1997; 52: 1375–80.

    Article  PubMed  CAS  Google Scholar 

  30. Imai H, Hamai K, Komatsuda A, Ohtani H, Miura AB. IgG subclasses in patients with membranoproliferative glomerulonephritis, membranous nephropathy and lupus nephritis. Kidney Int. 1997; 51: 270–6.

    Article  PubMed  CAS  Google Scholar 

  31. Duits AJ, Bootsam H, Derksen RHW et al. Skewed distribution of IgG Fc receptorIIa(CD32) polymorphism is associated with renal disease in systemic lupus erythematosus patients. Arthritis Rheum. 1995; 39: 1832–6.

    Article  Google Scholar 

  32. Botto M, Theodorisdis E, Thompson EM et al. FcγRIIa polymorphism in systemic lupus erythematosus: no association with disease. Clin Exp Immunol. 1996; 104: 264–8.

    Article  PubMed  CAS  Google Scholar 

  33. Norris CF, Pricop L, Millard SS et al. A naturally occurring mutation in FcγRIIA: a Q to K 127 change confers unique binding properties to the R131 allelic form of the receptor. Blood. 1998; 91: 656–62.

    PubMed  CAS  Google Scholar 

  34. Radeke HH, Gessner JE, Uciechowski P, Magert HJ, Schmidt RE, Resch K. Intrinsic human glomerular mesangial cells can express receptors for IgG complexes (hFcγRIII-A) and the associated FcεRI y-chain. J Immunol. 1994; 153: 1281–92.

    PubMed  CAS  Google Scholar 

  35. Vance BA, Huizinga TWJ, Wardwell K, Guyre PM. Binding of monomeric human IgG defines an expression polymorphism of FcγRIII on large granular lymphocyte/natural killer cells. J Immunol. 1993; 151: 6429–39.

    PubMed  CAS  Google Scholar 

  36. de Haas M, Koene HR, Kleijer M et al. A triallelic Fcγreceptor type IIIA polymorphism influences the binding of human IgG by NK cell FcγRIIIA. J Immunol. 1996; 156: 2948–55.

    PubMed  Google Scholar 

  37. Koene HR, de Haas M, Roos D, von dem Borne AEGK. Soluble FcγRIII: biology and clinical implications. In: van de Winkel JGJ, Capel PJA, eds, Human IgG Fc Receptors. Austin: R.G. Landes Company; 1996: 181–93.

    Google Scholar 

  38. Jawahar S, Moody C, Chan M, Finberg R, Geha R, Chatila T. Natural killer (NK) cell deficiency associated with an epitope-deficient Fcγreceptor type IIIA (CD16-II). Clin Exp Immunol. 1996; 103: 408–13.

    Article  PubMed  CAS  Google Scholar 

  39. Ravetch JV, Perussia B. Alternative membrane forms of FcγRIII (CD16) on human NK cells and neutrophils: cell-type specific expression of two genes which differ in single nucleotide substitutions. J Exp Med. 1989; 170: 481–97.

    Article  PubMed  CAS  Google Scholar 

  40. Hulett MD, Hogarth PM. Molecular basis of Fc receptor function. Adv Immunol. 1994; 57: 1–124.

    Article  PubMed  CAS  Google Scholar 

  41. Hibbs ML, Tolvanen M, Carpen O. Membrane-proximal Ig-like domain of FcγRIII (CD16) contains residues critical for ligand binding. J Immunol. 1994; 152: 4466–74.

    PubMed  CAS  Google Scholar 

  42. Hulett MD, Witort E, Brinkworth RI, McKenzie IFC, Hogarth PM. Multiple regions of human FcγRII (CD32) contribute to the binding of IgG. J Biol Chem. 1995; 270: 21188–94.

    Article  PubMed  CAS  Google Scholar 

  43. Tamm A, Kister A, Nolte KU, Gessner JU, Schmidt RE. The IgG binding site of human FcγRII IB receptor involves CC′and FG loops of the membrane-proximal domain. J Biol Chem. 1996; 271: 3659–66.

    Article  PubMed  CAS  Google Scholar 

  44. Tamm A, Schmidt RE. The binding epitopes of human CD16 (FcγRIII) monoclonal antibodies. Implications for ligand binding. J Immunol. 1996; 157: 1576–81.

    PubMed  CAS  Google Scholar 

  45. Wu J, Edberg JC, Redecha PB, Bansal V et al. A novel polymorphism of FcγRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J Clin Invest. 1997; 100: 1059–70.

    Article  PubMed  CAS  Google Scholar 

  46. Edberg JC, Kimberly RP. Cell-specific glycoforms of FcγRIIIa: differential ligand binding. J Immunol. 1997; 159: 3849–57.

    PubMed  CAS  Google Scholar 

  47. Erbe DV, Pffeferkorn ER, Fanger MW. Functions of the various IgG Fc receptors in mediating killing of Toxoplasma gondii. J Immunol. 1991; 146: 3145–51.

    PubMed  CAS  Google Scholar 

  48. Tyler DS, Nastala CL, Stanley SD, Matthews TJ, Lyerly HK, Weinhold KJ. GP120 specific cellular cytotoxicity in HIV-1 seropositive individuals. Evidence for circulating CD16+ effector cells armed in vivo with cytophilic antibody. J Immunol. 1989; 142: 1177–82.

    PubMed  CAS  Google Scholar 

  49. Wu J, Bansal V, Arnett F et al. The FcγRIIIA 176F/V polymorphism associates with the SLE phenotype in Caucasians and African Americans. Arthritis Rheum. 1997; 40:S316.

    Google Scholar 

  50. Scallon BJ, Scigliano E., Freedman VH et al. A human immunoglobulin G receptor exists in both polypeptide-anchored and phosphatidylinositol-anchored forms. Proc Natl Acad Sci USA. 1989; 86: 5079–83.

    Article  PubMed  CAS  Google Scholar 

  51. Peltz GA, Grundy HO, Lebo RV, Yssel H, Barsh GS, Moore KW. Human FcγRIII: cloning, expression and identification of the chromosomal locus of the two Fcγreceptors for IgG. Proc Natl Acad Sci USA. 1989; 86: 1013–17.

    Article  PubMed  CAS  Google Scholar 

  52. Ory PA, Clark MR, Kwoh EE, Clarkson SB, Goldstein IM. Sequences of complementary DNAs that encode the NA1 and NA2 forms of Fcγreceptor III on human neutrophils. J Clin Invest. 1989; 84: 1688–92.

    Article  PubMed  CAS  Google Scholar 

  53. Huizinga TWJ, Kleijer M, Tetteroo PA, Roos D, von dem Borne AEGK. Biallelic neutrophil NA-antigen system is associated with a polymorphism on the phosphoinositol-linked Fcγreceptor III (CD16). Blood. 1990; 75: 213–17.

    PubMed  CAS  Google Scholar 

  54. Salmon JE, Edberg JC, Kimberly RP. Fcγreceptor III on human neutrophils. Allelic variants have functionally distinct capacities. J Clin Invest. 1990; 85: 1287–95.

    Article  PubMed  CAS  Google Scholar 

  55. Salmon JE, Millard SS, Brogle NL, Kimberly RP. Fcγreceptor IIIb enhances Fcγreceptor IIa function in an oxidant dependent and allele-sensitive manner. J Clin Invest. 1995; 95: 2877–85.

    Article  PubMed  CAS  Google Scholar 

  56. Bredius RGM, Fijen CAP, de Haas M et al. Role of neutrophil FcγRII (CD32) and FcγRIIIb (CD16) polymorphic forms in phagocytosis of human IgG1 and IgG3-opsonized bacteria and erythrocytes. Immunology. 1994; 83: 624–30.

    PubMed  CAS  Google Scholar 

  57. Lalezari P. Granulocyte antigen systems. In: Engelfriet CP, Van Loghem JJ, Kr AEG, eds, Immunohaematology. Elsevier: Amsterdam; 1984: 33.

    Google Scholar 

  58. Bux J, Stein EL, Santoso S et al. NA gene frequencies in the German population, determined by polymerase chain reaction with sequence-specific primers. Transfusion. 1995;35: 54–7.

    Google Scholar 

  59. Wainstein E, Kocher M, Wu J et al. The neutrophil FcγRIIIB is associated with renal dysfunction in Wegeners granulomatosis (WG), 1997; Submitted for publication.

    Google Scholar 

  60. Bux J, Stein E-L, Bierling P et al. Characterization of a new alloantigen (SH) on the human neutrophil Fcγreceptor IIIb. Blood. 1998; 89: 1027–34.

    Google Scholar 

  61. Fijen CAP, Bredius RGM, Kuijper EJ. Polymorphism of IgG Fcγreceptors in meningococcal disease: risk marker in complement deficient patients. Ann Intern Med. 1993; 119: 636–41.

    PubMed  CAS  Google Scholar 

  62. Wainstein E, Edberg E, Csernok E et al. FcγRIIIB alleles predict renal dysfunction in Wegeners granulomatosis (WG). Arthritis Rheum. 1996; 39:S210

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Salmon, J.E., Kimberly, R.P. (1998). Fcγ receptor polymorphisms: clinical aspects. In: van de Winkel, J.G.J., Hogarth, P.M. (eds) The Immunoglobulin Receptors and their Physiological and Pathological Roles in Immunity. Immunology and Medicine Series, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5018-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5018-7_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6106-3

  • Online ISBN: 978-94-011-5018-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics