Differential behaviour and shifts in genotype composition during the beginning of a seasonal period of diel vertical migration

  • Piet Spaak
  • Joop Ringelberg
Part of the Developments in Hydrobiology book series (DIHY, volume 126)

Abstract

During the first few weeks of a recurring seasonal period of diel vertical migration in Lake Maarsseveen (The Netherlands), part of the hybrid Daphnia galeata × hyalina population migrated, while another part remained in the epilimnion. In the epilimnion, 0+ perch prey upon daphnids during daytime. Gradually, the number of adult Daphnia in the epilimnion decrease until the epilimnion is nearly devoid of daphnids. The population as a whole may decrease, as in 1991, or may increase as in 1992. Genotype composition, as determined by allozyme analysis, changed substantially within a fortnight in 1992, and one genotype became dominant. Our data are in agreement with the hypothesis that predation on different genotypes (clones) occurs during the beginning of a seasonal period of diel vertical migration, though our data do not allow to exclude alternative explanations.

Key words

Daphnia 0+ perch genotypes selective predation allozyme analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Meester, L., 1990. Evidence for intra-population genetic variability forphototactic behaviour in Daphnia magna Straus, 1820. Biol. Jb Dodonaea 58: 84–93.Google Scholar
  2. De Meester, L., 1993. Genotype, fish-mediated chemicals, and phototactic behavior in Daphnia magna. Ecology 74: 1467–1474.CrossRefGoogle Scholar
  3. De Meester, L., 1996. Evolutionary potential and local genetic differentiation in a phenotypically plastic trait of a cyclical parthenogen, Daphnia magna. Evolution 50: 1293–1298.CrossRefGoogle Scholar
  4. De Meester, L. & H. J. Dumont, 1988. The genetics of phototaxis in Daphnia magna: Existence of three phenotypes for vertical migration among parthenogenetic females. Hydrobiologia 162: 47–55.CrossRefGoogle Scholar
  5. De Meester, L., L. J. Weider & R. Tollrian, 1995. Alternative anti-predator defences and genetic polymorphism in a pelagic predator-prey system. Nature 378: 483–485.CrossRefGoogle Scholar
  6. Flik, B. J. G., D. Aanen & J. Ringelberg, 1997. The extent of predation by juvenile perch during diel vertical migration of Daphnia. Arch. Hydrobiol. Beih. Ergebn. Limnol. 49: 51–58.Google Scholar
  7. Flik, B. J. G. & J. Ringelberg, 1993. Influence of food availability on the initiation of diel vertical migration (DVM) in Lake Maars-seveen. Arch. Hydrobiol. Beih. Ergebn. Limnol. 39: 57–65.Google Scholar
  8. Forward, R. B., 1993. Photoresponses during diel vertical migration of brine shrimp larvae: effect of predator exposure. Arch. Hydrobiol. Beih. Ergebn. Limnol. 39: 37–44.Google Scholar
  9. Gliwicz, M. Z., 1986. Prédation and the evolution of vertical migration in Zooplankton. Nature 320: 746–748.CrossRefGoogle Scholar
  10. Hebert, P. D. N., 1987. Genotypic characteristics of cyclic parthenogens and their obligately asexual derivates. In S. Stearns (ed.), The evolution of sex and its consequences, Birkhäuser Verlag, Basel: 175–195.Google Scholar
  11. Hebert, P. D. N. & M. J. Beaton, 1989. Methodologies for allozyme analysis using cellulose acetate electrophoresis. Helena Laboratories Beaumont, Texas, 32 pp.Google Scholar
  12. Huntingford, F. A. & N. B. Metcalfe, 1986. The evolution of anti-predatory behaviour in Zooplankton. Nature 320: 682.CrossRefGoogle Scholar
  13. King, C. E. & M. R. Miracle, 1995. Diel vertical migration by Daphnia longispina in a Spanish lake: Genetic sources of distributional variation. Limnol. Oceanogr. 40: 226–231.CrossRefGoogle Scholar
  14. Loose, C. J., 1993. Daphnia diel vertical migration behavior: Response to vertebrate predator abundance. Arch. Hydrobiol. Beih. Ergebn. Limnol. 39: 29–36.Google Scholar
  15. Loose, C. J., E. Von Elert & P. Dawidowicz, 1993. Chemically-induced diel vertical migration in Daphnia — a new bioassay for kairomones exuded by fish. Arch. Hydrobiol. 126: 329–337.Google Scholar
  16. Lynch, M., 1987. The consequences of fluctuating selection for isozyme polymorphisms in Daphnia. Genetics 115: 657–669.PubMedGoogle Scholar
  17. Lynch, M. & W. Gabriel, 1983. Phenotypic evolution and parthenogenesis. Am. Nat. 122: 745–764.CrossRefGoogle Scholar
  18. Müller, J. & A. Seitz, 1993. Habitat partitioning and differential vertical migration of some Daphnia genotypes in a lake. Arch. Hydrobiol. Beih. Ergebn. Limnol. 39: 167–174.Google Scholar
  19. Neill, W. E., 1992. Population variation in the ontogeny of predator-induced vertical migration of copepods. Nature 356: 54–57.CrossRefGoogle Scholar
  20. Ohman, M. D., 1990. The demographic benefits of diel vertical migration by Zooplankton. Ecol. Monogr. 60: 257–281.CrossRefGoogle Scholar
  21. Reede, T., 1995. Life history shifts in response to different levels of fish kairomones in Daphnia. J. Plankton Res. 17:1661–1667.CrossRefGoogle Scholar
  22. Reede, T. & J. Ringelberg, 1995. The influence of a fish exudate on two clones of the hybrid Daphnia galeata x hyalina. Hydrobiologia 307: 207–212.CrossRefGoogle Scholar
  23. Ringelberg, J., 1991a. Enhancement of the phototactic reaction in Daphnia-hyalina by a chemical mediated by juvenile perch (Perca-fluviatilis). J. Plankton Res. 13: 17–25.CrossRefGoogle Scholar
  24. Ringelberg, J., 1991b. A mechanism of predator-mediated induction of diel vertical migration in Daphnia hyalina. J. Plankton Res. 13: 83–89.CrossRefGoogle Scholar
  25. Ringelberg, J., B. G. J. Flik, D. Lindenaar & K. Royackers, 1991. Diel vertical migration of Daphnia hyalina (sensu latiori) in Lake Maarsseveen: Part: 1. Aspects of seasonal and daily timing. Arch. Hydrobiol. 121: 129–145.Google Scholar
  26. Ringelberg, J. & B. J. G. Flik, 1994. Increased phototaxis in the field leads to enhanced diel vertical migration. Limnol. Oceanogr. 39: 1855–1864.CrossRefGoogle Scholar
  27. Ringelberg, J., B. J. G. Flik, D. Aanen & E. Van Gool, 1997. Amplitude of diel vertical migration (DVM) is a function of fish biomass, a hypothesis. Arch. Hydrobiol. Beih. Ergebn. Limnol. 49: 71–78.Google Scholar
  28. Sokal, R. R. & F. J. Rohlf, 1995. Biometry. W.H. Freeman & Co, San Francisco USA, 887 pp.Google Scholar
  29. Spaak, P., 1996. Temporal changes in the genetic structure of the Daphnia species complex in Tjeukemeer, with evidence for back-crossing. Heredity 76: 539–548.CrossRefGoogle Scholar
  30. Spaak, P. & J. R. Hoekstra, 1993. Clonal structure of the Daphnia population in Lake Maarsseveen: its implications for diel vertical migration. Arch. Hydrobiol. Beih. Ergebn. Limnol. 39:157–165.Google Scholar
  31. Stich, H. B. & W. Lampert, 1981. Predator evasion as an explanation of diurnal vertical migration by Zooplankton. Nature 293: 396–398.CrossRefGoogle Scholar
  32. Swain, W., R. Lingeman & F. Heinis, 1987. A characterization and description of the Maarsseveen lake system. Hydrobiol. Bull. 21: 5–16.CrossRefGoogle Scholar
  33. Weider, L. J., 1984. Spatial heterogeneity of Daphnia genotypes: Vertical migration and habitat partitioning. Limnol. Oceanogr. 29: 225–235.CrossRefGoogle Scholar
  34. Wolf, H. G. & M. A. Mort, 1986. Interspecific hybridization underlies phenotypic variability in Daphnia populations. Oecologia 68: 507–511.CrossRefGoogle Scholar
  35. Zaret, T. M. & J. S. Suffern, 1976. Vertical migration in Zooplankton as a predator avoidance mechanism. Limnol. Oceanogr. 21: 804–813.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Piet Spaak
    • 1
  • Joop Ringelberg
    • 2
  1. 1.Department of LimnologyEAWAG/ETHDübendorfSwitzerland
  2. 2.Netherlands Institute of EcologyCentre for Limnology and University of AmsterdamNieuwersluisThe Netherlands

Personalised recommendations