Advertisement

Identification of a new family of tandem repeats in Triticeae genomes

  • E. A. Salina
  • E. G. Pestsova
  • I. G. Adonina
  • A. V. Vershinin
Part of the Developments in Plant Breeding book series (DIPB, volume 6)

Summary

A new family of cereal tandem repeats was isolated, characterised and designated as spelt-1. The family of repeats comprises about 2% of the Aegilops speltoides genome; however, its content differs considerably in the genomes of various Triticeae species. Copy number of the constituent sequence, relative to Ae. speltoides, proved to be 40–60 times reduced in the genomes of tetraploid wheats, 400-fold reduced in the genome of Triticum monococcum, and 1200–2400 times in the genomes of the other 19 Triticeae species studied. Drastic difference in the copy number and homology extent of the spelt-1 family sequences between Ae. speltoides and other diploid species allows the utilisation of these sequences as species-specific telomeric markers for Ae. speltoides, provided stringent hybridisation conditions apply. RFLP (restriction fragment length polymorphisms) analysis of spelt-1 reveals polymorphism between the above species. This study of spelt-1 organisation in different Triticum species provided further substantiation of the polyphyletic origin of the B genome of polyploid wheat.

Key words

Aegilops speltoides genome-specific sequences tandem repeats Triticeae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul, S.F., W. Gish, W. Miller, E.W. Myers & D.J. Lipman, 1990. Basic local alignment search tool. J Mol Biol 215: 403–410.PubMedGoogle Scholar
  2. Ausubel, M.L., R. Brent, R.E. Kingston, D.D. Moore, J.A. Smith, J.G. Seidman & K. Struhl, 1987. Current Protocols in Molecular Biology. Greene Publishing Associates/Wiley Interscience, New York.Google Scholar
  3. Bedbrook, J.R., J. Jones, M. O’Dell, R.D. Thompson & R.B. Flavell, 1980. A molecular description of telomeric heterochromatin in Secale species. Cell 19: 545–560.PubMedCrossRefGoogle Scholar
  4. Dennis, E.S., W.L. Gerlach & W.J. Peacock, 1980. Identical polypyrimidine polypurine satellite DNA in wheat and barley. Heredity 44: 345–366.CrossRefGoogle Scholar
  5. Grunstein, M. & D. Hogness, 1975. Colony hybridisation: A method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci 75: 5463–5476.Google Scholar
  6. Hutchinson, J. & D.M. Lonsdale, 1982. The chromosomal distribution of cloned highly repetitive sequences from hexaploid wheat. Heredity 48: 371–376.CrossRefGoogle Scholar
  7. Feinberg, A.P. & B.A. Vogelstein, 1983. A technique for radiolabelling DNA restriction endonuclease fragments to hgh specific activity. Anal Biochem 132: 6–13.PubMedCrossRefGoogle Scholar
  8. Jones, J.D.G. & R.B. Flavell, 1982. The structure, amount and chromosomal localisation of defined repeated DNA sequences in species of the genus Secale. Chromosoma 86: 613–641.CrossRefGoogle Scholar
  9. Kerby, K. & J. Kuspira, 1987. The phylogeny of the polyploid wheats Triticum aestivum (bread wheat) and Triticum turgidum (macaroni wheat). Genome 29: 722–736.CrossRefGoogle Scholar
  10. Koebner, R.M.D., K.W. Shepherd & R. Appels, 1986. Rye heterochromatin. II. Characterisation of a derivative from chromosome 1DS/1RL with a reduced amount of the major repeating sequence. Can J Genet Cytol 28(5): 658–664.Google Scholar
  11. Maniatis, T., E.F. Fritsch & J. Sambrook, 1982. Molecular cloning. A laboratory manual. Cold Spring Harbour Laboratory, Cold Spring Harbour, New York.Google Scholar
  12. May, C.E. & R. Appels, 1980. Rye chromosome translocations in hexaploid wheat: A re-evaluation of the loss of heterochromatin from rye chromosome. Theor Appl Genet 56: 17–23.CrossRefGoogle Scholar
  13. Miller, T.E., 1987. Systematics and evolution. In: F.G.H. Lupton (Ed.), Wheat Breeding: Its Scientific Basis, pp. 1–30. Chapman and Hall, London, New York.Google Scholar
  14. Nagaki, K., H. Tsujimoto, K. Isono & T. Sasakuma, 1995. Molecular characterisation of a tandem repeat, Afa family, and its distribution among Triticeae. Genome 38: 479–486.PubMedCrossRefGoogle Scholar
  15. Rayburn, A.L. & B.S. Gill, 1986. Isolation of a D genome-specific repeated DNA sequences from Aegilops squarrosa. Plant Mol Biol Rep 4: 102–109.CrossRefGoogle Scholar
  16. Rigby, D.W.J., M. Diermann, C. Rhodes & P. Berg, 1977. Labelling DNA to high specific activity in vitro by nick-translation with DNA polymerase. I. J Mol Biol 113: 237–251.PubMedCrossRefGoogle Scholar
  17. Rivin, C.J., C.A. Cullis & V. Walbot, 1986. Evaluating quantitative variation in the genome of Zea mays. Genetics 36: 899–905.Google Scholar
  18. Sanger, F, S. Nicklen & A.R. Coulson, 1977. DNA sequencing with chain-terminating inhibitors. Proceedings of the Nat Aca Sci USA, 1977. 74(12): 5463–5476.CrossRefGoogle Scholar
  19. Sano, H., M. Imokawa, & R. Sager, 1988. Detection of heavy methylation in human repetitive DNA subsets by a monoclonal antibody against 5-methylcytosine. Biochim et Biophys Acta 951: 157–165.CrossRefGoogle Scholar
  20. Talbert, L.E., N.K. Blake, E.W. Storlie & M. Lavin, 1995. Variability in wheat based on low copy DNA sequence comparisons. Genome 38: 951–957.PubMedCrossRefGoogle Scholar
  21. Vershinin, A.V., S.K. Svitashev, P.O. Gummesson, B. Salomon, R. von Bothmer & T. Bryngelsson, 1994 Characterisation of a family of tandemly repeated DNA sequences in Triticeae. Theor Appl Genet 89: 217–225.CrossRefGoogle Scholar
  22. Willard, H.F. & J.S. Waye, 1987. Hierarchical order in chromosome-specific human alpha satellite DNA. Trends Genet 3: 192–198.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • E. A. Salina
    • 1
  • E. G. Pestsova
    • 1
  • I. G. Adonina
    • 1
  • A. V. Vershinin
    • 1
  1. 1.Siberian Department of the Russian Academy of SciencesInstitute of Cytology and GeneticsNovosibrskRussia

Personalised recommendations