Advertisement

The Hard Life of Prokaryotes in the Leaf Cavities of Azolla

  • M. Grilli Caiola
  • C. Forni
Chapter
Part of the Cellular Origin and Life in Extreme Habitats book series (COLE, volume 1)

Abstract

Life of cyanobionts and bacteriobionts inside the leaf cavities of Azolla cannot be so easy. Fern shows many features of remedation plant, able to adapt itself to the change of the environmental conditions such as high light intensity, high temperature or water composition. Cyanobionts seem to modify their metabolism according to that of the fern, and whenever the host life conditions become stressing, the symbiont can be eliminated (Hill, 1975; Kitoh et al., 1991). Therefore speaking in term of symbiosis, it may be not so easy for the symbionts, since Azolla behaves at its convenience, forcing them to follow its benefit. Anyway, some authors consider the Azolla-Anabaena relationship like an happy marriage between lucky partners, where each of them contributes to the menage. Some considerations can be made on the different aspects of such unusual association.

Keywords

Nitrogen Fixation Hair Cell MoFe Protein Coryneform Bacterium Akinetes Differentiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becking, J. (1987). Plant Soil 100, 183–212.CrossRefGoogle Scholar
  2. Calvert, H.E. and Peters, G.A. (1981). New Phytologyst 89, 327–335.CrossRefGoogle Scholar
  3. Canini, A., Grilli Caiola, M., Bertocchi, P., Lavagnini, M.G. and Mascini, M. (1992). Sensors and Actuators B 7, 431–435.CrossRefGoogle Scholar
  4. Canini, A. and Grilli Caiola, M. (1995). In, F.E. Round and D.J. Chapman (eds.), Progress in Phycological Research, vol. 11, Biopress Ltd, Bristol, pp. 154–186.Google Scholar
  5. Carrapiço, F. (s1991). In: M. Polsinelli, R. Materassi, M. Vincenzini (eds.), Nitrogen fixation, Kluwer Academic Publishers, Dordrecht, pp.453–456.CrossRefGoogle Scholar
  6. Caudales, R., Wells, J.M. and Antoine, A.D. (1992). J. General Microbiology 138, 1489–1494.CrossRefGoogle Scholar
  7. de Roissart, P., Jacques, C., Waterkeyn, L., Berghmans, P. and Van Hove, C. (1994). In, N.A. Hegazi, M. Fayeze M.Monib (eds.), Nitrogen fixation with non-Legumes, The American University in Cairo Press, pp. 133–138.Google Scholar
  8. Forni, C., Grilli Caiola, M. and Gentili, S. (1989). In, F.A. Skinner, R.M. Boddey and I. Fendrik (eds.), Nitrogen fixation with Non-Legumes, Kluwer Academic Publishers, Dordrecht, pp. 83–88.CrossRefGoogle Scholar
  9. Forni, C., Gentili S., Van Hove, C. and Grilli Caiola, M. (1990). Annali di Microbiologia 40, 235–243.Google Scholar
  10. Forni, C., Tel-Or, E., Bar, E. and Grilli Caiola, M. (1991). Plant and Soil 137, 151–155.CrossRefGoogle Scholar
  11. Forni, C. and Grilli Caiola, M. (1992). Microbiologica 15(3), 271–279.Google Scholar
  12. Form, C., Haegi, A., Del Gallo, M. and Grilli Caiola, M. (1992). FEMS Microbiology Letters 93, 269–274.CrossRefGoogle Scholar
  13. Forni, C., Riov, J., Grilli Caiola, M. and Tel-Or, E. (1992a). J. General Microbiology 138, 377–381.CrossRefGoogle Scholar
  14. Forni, C. and Grilli Caiola, M. (1993). Giornale Botanico Italiano 127(3), 422–427.CrossRefGoogle Scholar
  15. Forni, C., Grilli Caiola, M. and Tel-Or, E. (1994). In, N.A. Hegazi, M. Fayeze M. Monib (eds.), Nitrogen fixation with non-Legumes, The American University in Cairo Press, pp. 117–125.Google Scholar
  16. Forni, C. (1995). Archiv fur Hydrobiologie, Algological Studies 83, 207–214.Google Scholar
  17. Gates, J.E., Fisher, R.W. and Candler, R.A. (1980). Archiv Microbiology 127, 163–165.CrossRefGoogle Scholar
  18. Gebhardt, J.S. and Nierzwicki-Bauer, S.A. (1991). Applied Environmental Microbiology 57, 2141–2146.Google Scholar
  19. Gonzalez, J.E., York, G. M. and Walker, G.C. (1996). Gene 179, 141–146.PubMedCrossRefGoogle Scholar
  20. Grilli, M. (1964). Annali Microbiologia Enzimologia 40, 235–243.Google Scholar
  21. Grilli Caiola, M. (1992). In, W. Reisser (ed.), Algae and symbioses: plants, animals, fungi, viruses, interactions explored, Biopress Limited, Bristol, pp.231–254.Google Scholar
  22. Grilli Caiola, M., Forni, C. and Castagnola, M. (1988). Symbiosis 5, 185–198.Google Scholar
  23. Grilli Caiola, M., Forni, C. and Castagnola, M. (1993). Symbiosis 14, 247–264.Google Scholar
  24. Hill, D.J. (1975). Planta 122, 179–184.CrossRefGoogle Scholar
  25. Hirsch, A.M. (1992). New Phytologist 122, 211–223.CrossRefGoogle Scholar
  26. Kitoh, S., Shiomi, N. and Uheda, E. (1991). Soil Science Plant Nutrition 37, 323–329.CrossRefGoogle Scholar
  27. Klein, E., Bar, E., Forni, C., Malkin, S. and Tel-Or, E. (1992). J. Microscopy: 167, 273–278.CrossRefGoogle Scholar
  28. Komàrek, J.S. and Anagnostidis, K. (1989). Archiv fur Hydrobiologie, Algological Studies 82, 247–345.Google Scholar
  29. Ladha, J.K. and Watanabe, I. (1984). New Phytologist 98, 295–300.CrossRefGoogle Scholar
  30. Leonardi, D., Canini, A. and Forni, C. (1993). Symbiosis 15, 269–283.Google Scholar
  31. Leizerovich, I., Fleminger, G., Kardish, N., Freusdorff, A. and Galun, M. (1988). Symbiosis 5, 209–222.Google Scholar
  32. Linblad, P., Bergman, B. and Nierzwicki-Bauer, S.A. (1991). Applied Environmental Microbiology 57, 3637–3640.Google Scholar
  33. Lumpkin, T.A. and Plucknett, D.L. (1980). Economic Botany 34, 111–153.CrossRefGoogle Scholar
  34. McCowen, S.W., MacArthur, L. and gates, J.E. (1987). Current Microbiology 14, 329–333.CrossRefGoogle Scholar
  35. Nierzwicki-Bauer, S. A. and Aulfinger, H. (1990). Current Microbiology 21, 123–129.CrossRefGoogle Scholar
  36. Nierzwicki-Bauer, S. A. and Aulfinger, H. (1991). Applied Environmental Microbiology 57, 3629–3636.Google Scholar
  37. Okorowkuo, N. and Van Hove, C. (1987). Microbios 49, 39–45.Google Scholar
  38. Peters, G. A. and Meeks, J.C. (1989). Annual Review Plant Physiology Plant molecualr Biology 40, 193–210.CrossRefGoogle Scholar
  39. Petro, M.J. and Gates, J.E. (1987) Symbwsis 3, 41–48.Google Scholar
  40. Plazinski, J., Taylor, R., Shaw, W., Croft, L., Rolfe, B.G. and Gunning, B.E.S. (1990). FEMS Microbiology Letters 70, 55–60.CrossRefGoogle Scholar
  41. Robins, R.J., Hall, D.O., Shi, D.-J., Turner, R.J. and Rhodes, M.J.C. (1986). FEMS Microbiology Letters 133, 157–160.Google Scholar
  42. Shannon, B.T., Gates, J.E. and McCowen, S.M. (1993). Symbiosis 15, 165–175.Google Scholar
  43. Strasburger, E. (1873). Uber Azolla. Jena.Google Scholar
  44. Uheda, E. (1986). Plant Cell Physiology 27, 1187–1190.Google Scholar
  45. Uheda, E. and Kitoh, S. (1991). Canadian J. Botany 69, 1418–1419.CrossRefGoogle Scholar
  46. Vagnoli, L., Marghen, M.C., Allotta, G. and Materassi, R. (1988). New Phytologist 120, 243–249.CrossRefGoogle Scholar
  47. Wallace, W.H. and Gates, J.E. (1986). Applied Environmental Microbiology 52, 425–429.Google Scholar
  48. Yun-Lu, X., Ke-Zhi, B., Sai Ling, Y., Cheng, C., Bao-Zhen, H. and Xiu-Zhang, H. (1983). Acta Botanica Sinica 25, 82–86.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • M. Grilli Caiola
    • 1
  • C. Forni
    • 1
  1. 1.Dipartimento di BiologiaUniversità di Roma “Tor Vergata”RomaItaly

Personalised recommendations