Advertisement

Astrobiology studies of microbes in simulated interplanetary space

  • Gerda Horneck
Part of the Astrophysics and Space Science Library book series (ASSL, volume 236)

Abstract

For laboratory studies on the responses of resistant life forms to simulated interplanetary space conditions, testbeds are available that simulate the parameters of space, such as vacuum, solar electromagnetic and cosmic ionizing radiation, temperature extremes and reduced gravity that can be applied separately, or in selected combinations. Appropriate biological test systems are extremophiles, i.e. microorganisms that are adapted to grow, or survive in extreme conditions of our biosphere. Examples are airborne microbes, endolithic or endoevaporitic microbial communities, or bacterial endospores. Such studies contribute to answer several questions pertinent to astrobiology, such as (i) the role of solar UV radiation in genetic stability, (ii) the role of gravity in basic biological functions, (iii) the probability and limits for interplanetary transfer of life, (iv) strategies of adaptation to environmental extremes, and (v) the needs for planetary protection.

Keywords

Interplanetary Space Bacterial Spore Matic Phase Change Subtilis Spore Bacillus Subtilis Spore 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abyzov, S.S. (1993) Microorganisms in the Antarctic ice. in: E. Friedmann (ed.) Antarctic Microbiology, Wiley-Liss, New York, pp. 265–295.Google Scholar
  2. 2.
    Arrhenius, S. (1903) Die Verbreitung des Lebens im Weltenraum. Die Umschau 7, 481–485.Google Scholar
  3. 3.
    Battista, J.R. (1997) Against all odds: the survival strategies of Deinococcus radiodurans. Ann. Rev. Microbiol. 51, 203–224.CrossRefGoogle Scholar
  4. 4.
    Brueschke, E.E., Suess, R.H., Willard M. (1961) The viability of microorganisms in ultra-high vacuum. Planet. Space Sci. 8, 30–34.ADSCrossRefGoogle Scholar
  5. 5.
    Bücker, H., Horneck, G. (1970) Survival of microorganisms under simulated space conditions. Life Sci. Space Res. 8, 33–38.Google Scholar
  6. 6.
    Bücker, H., Horneck, G. (1975) Studies on the effects of cosmic HZE-particles on different biological systems in the Biostack I and II flown on board of Apollo 16 and 17. In: O.F. Nygaard, H.J. Adler, W.K. Sinclair (eds.) Radiation Research, Academic Press, New York, pp. 1138–1151.Google Scholar
  7. 7.
    Cadet, J., Voituriez, L., Grand, A., Hruska, F.E., Vigny, P., Kan, L.S. (1985) Photosensitized reactions of nucleic acids. Biochimie 67, 277.CrossRefGoogle Scholar
  8. 8.
    Cadet, J., Weinfeld, (1993) Detecting DNA damage. Anal. Chem. 65, 675A–682A.Google Scholar
  9. 9.
    Cox, C.S. (1993) Roles of water molecules in bacteria and viruses. Origins of Life and Evolution of the Biosphere, 23, 29–36.ADSCrossRefGoogle Scholar
  10. 10.
    Crowe, L.M., Crowe J.H. (1992) Anhydrobiosis: a strategy for survival. Adv. Space Res. 12, (4)239-(4)247.Google Scholar
  11. 11.
    Dodonova, N.Ya., Kiseleva, M.N., Remisova, L.A., Tsyganenko, N.M. (1982) The vacuum ultraviolet photochemistry of nucleotides. Photochem. Photobiol. 35, 129–132.CrossRefGoogle Scholar
  12. 12.
    Dose, K., Bieger-Dose, A., Labusch, M., Gill, M. (1992) Survival in extreme dryness and DNA single-strand breaks. Adv. Space Res. 12, (4)221-(4)229.Google Scholar
  13. 13.
    Foster, T.L., Winanas, L. Jr., Casey, R.C., Kirschner, L.E. (1978) Response of terrestrial microorganisms to simulated Martian environment. Appl. Environ. Microbiol. 35, 730–737.Google Scholar
  14. 14.
    Frankenberg-Schwager, M., Bücker, H., Wollenhaupt, H. (1974) Survivability of microorganisms in space and its impact on planetary exploration. Raumfahrtforschung, 5, 209–212.ADSGoogle Scholar
  15. 15.
    Friedberg, E.C., Walker, G.C., Siede, W. (1995) DNA Repair and Mutagenesis. ASM Press, Washington.Google Scholar
  16. 16.
    Friedmann, E.I. (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215, 1045–1053.ADSCrossRefGoogle Scholar
  17. 17.
    Friedmann, E.I. (1993) Antarctic Microbiology, Wiley-Liss, New York.Google Scholar
  18. 18.
    Gilichinsky, D.A., Soina, V.S., Petrova, M.A. (1993) Cryoprotective properties of water in the Earth cryo-lithosphere and its role in exobiology. Origins of Life 23, 65–75.CrossRefGoogle Scholar
  19. 19.
    Gladman, B. (1997) Destination: Earth. Martian meteorite delivery. Icarus, 130, 228–246.ADSCrossRefGoogle Scholar
  20. 20.
    Hemmersbach, R., Voormanns, R., Hader, D.-P. (1996) Graviresponses in Paramecium biaurelia under different accelerations — studies on the ground and in space. J. Exp. Biol. 199, 2199–2205.Google Scholar
  21. 21.
    Horneck, G., (1981) Survival of microorganisms in space: areview. Adv. Space Res. 1, (14)39-(14)48.Google Scholar
  22. 22.
    Horneck, G. (1992) Radiobiological experiments in space: a review. Nucl. Tracks Radiat. Meas. 20, 185–205.CrossRefGoogle Scholar
  23. 23.
    Horneck, G. (1993) Responses of Bacillus subtilis spores to space environment: results from experiments in space. Origins of Life 23, 37–52.CrossRefGoogle Scholar
  24. 24.
    Horneck, G. (1995a) Exobiology, the study of the origin, evolution and distribution of life within the context of cosmic evolution: areview. Planet. Space Sci. 43, 189–217.ADSCrossRefGoogle Scholar
  25. 25.
    Horneck, G. (1995b) Quantification of the biological effectiveness of environmental UV radiation. J. Photo-chem. Photobiol. B: Biol. 31, 43–49.CrossRefGoogle Scholar
  26. 26.
    Horneck, G., Bücker, H., Wollenhaupt, H. (1971) Survival of bacterial spores under some simulated lunar surface conditions. Life Sci. Space Res. 9, 119–124.Google Scholar
  27. 27.
    Horneck, G., Bücker, H., Reitz, G., Requardt, H., Dose, K., Martens, K.D., Mennigmann, H.D., Weber, P. (1984) Microorganisms in the space environment. Science 225, 226–228.ADSCrossRefGoogle Scholar
  28. 28.
    Horneck, G., Bücker, H., Reitz, G., (1994) Long-term survival of bacterial spores in space. Adv. Space Res. (10)41-(10)45.Google Scholar
  29. 29.
    Horneck, G., Eschweiler, U., Reitz, G., Wehner, J., Willimek, R., Strauch, K. (1995) Biological responses to space: results of the experiment „Exobiological Unit“ of ERA on EURECA I. Adv. Space Res., 16(8), 105.ADSCrossRefGoogle Scholar
  30. 30.
    Imshenetsky, A.A., Lysenko, D.V., Kazakov, G.A. (1978) Upper boundary of the biosphere. Appl. Environm. Microbiol. 35, 1–5.Google Scholar
  31. 31.
    Ito, T. (1989) Vacuum ultraviolet photobiology with synchrotron radiation, In: R.M. Sweet, A.D. Wood-head (eds.), Symchrotron Radiation in Structured Biology, Plenum, New York, pp. 221–241.CrossRefGoogle Scholar
  32. 32.
    Kappen, L. (1973) Response to extreme environments. In: Ahmadjian, V., Hale, M.E. (eds.) The Lichens III. 10, Academic Press, New York, pp. 311–380.CrossRefGoogle Scholar
  33. 33.
    Keller, B., Horneck, G. (1992) Action spectra in the vacuum UV and far UV /122 — 30 nm) for inactivation of wet and vacuum-dry spores of Streptomyces griseus and photoreactivation. J. Photochem. Photobiol. B:Biol. 16, 61–72.CrossRefGoogle Scholar
  34. 34.
    Kiefer, J., Kost, M., Schenk-Meuser, K. (1996) Radiation biology. In: D. Moore, P. Bie and H. Oser (eds.) Biological and Medical Research in Space, Springer, Berlin, pp. 300–367.CrossRefGoogle Scholar
  35. 35.
    Koike, J., Oshima, T., Koike, K., Taguchi, H., Tanaka, R., Nishimura, K., Miyaji, M. (1992) Survival rates of some terrestrial microorganisms under simulated space conditions. Adv. Space Res. 12, (4)271-(4)274.Google Scholar
  36. 36.
    Kolbel-Boekel, J., Anders, E., Nehrkorn, A (1988) Microbial communities in the saturated groundwater environment, II. Diversity of bacterial communities in a Pleistocene sand aquifer and their in vitro activities. Microbial Ecology 16, 31–48.CrossRefGoogle Scholar
  37. 37.
    Lindberg, C, Horneck, G. (1991) Action spectra for survival and spore photoproduct formation of Bacillus subtilis irradiated with short wavelength (200–300 nm) UV at atmospheric pressure and in vacuo. J. Photochem. Photobiol. B:Biol. 11, 69–80.CrossRefGoogle Scholar
  38. 38.
    Mancinelli, R. L., White, M. R., Rothschild L. J. (1998) Biopan-survival I: exposure of osmophilic microbes to the space environment. Adv. Space Res. (in press).Google Scholar
  39. 39.
    Mancinelli, R.L. (1989) Peroxides and the survivability of microorganisms on the surface of Mars. Adv. Space Res. 9, (6)191-(6)195.Google Scholar
  40. 40.
    Melosh, H.J. (1988) The rocky road to Panspermia. Nature 332, 687–688.ADSCrossRefGoogle Scholar
  41. 41.
    Moll, D.M., Vestal, J.R. (1993) Survival of microorganisms in smectite clays: implications for Martian exobiology. Icarus 98, 233–239.ADSCrossRefGoogle Scholar
  42. 42.
    Moreno, M.A. (1988) Microorganism transport from Earth to Mars. Nature 336, 209.ADSCrossRefGoogle Scholar
  43. 43.
    Munakata, N., Hieda, k., Kobayashi, K., Ito, T (1986) Action spectra in the ultraviolet wavelength (150–250 nm) for inactivation and mutagenesis ofBacillus subtilis spores obtained with synchrotron radiation. Photochem. Photobiol. 44, 385–390.CrossRefGoogle Scholar
  44. 44.
    Munakata, N., Saitou, M., Takahashi, N., Hieda, K., Morohoshi, F.(1997) Induction of unique tandem-double change mutations in bacterial spores exposed to extreme dryness. Mutation Research, 390, 189–195.CrossRefGoogle Scholar
  45. 45.
    Nussinov, M.D., Lysenko, S.V. (1983) Cosmic vacuum prevents radiopanspermia. Origins of Life, 13, 153–164.ADSCrossRefGoogle Scholar
  46. 46.
    Potts, M. (1994) Desiccation tolerance of prokaryotes. Microbiol. Rev. 58, 755–805.Google Scholar
  47. 47.
    Richter, H. (1865) Zur Darwinschen Lehre. Schmidts Jahrbuch Ges. Med. 126, 243–249.Google Scholar
  48. 48.
    Rothschild, L.J., Giver, L.J., White, MR., Mancinelli, R.L. (1994) Metabolie activity of microorganisms in evaporites. J. Phycol. 30, 431–438.CrossRefGoogle Scholar
  49. 49.
    Rummel, L.D. (1992) Planetary protection policy (USA). Adv. Space Res. 12, (4)129-(4)131.Google Scholar
  50. 50.
    Schäfer, M., Facius, R., Reitz, G. (1994) Inactivation of individual Bacillus subtilis spores in dependence of their distance to single accelerated heavy ions. Adv. Space Res. 14, (10)1039-(10)1046.Google Scholar
  51. 51.
    Seckmeyer G. and Payer H.D., 1993, A new sunlight simulator for ecological research on plants. J. Photo-chem. Photobiol. B: Biol. 21, 175–181.CrossRefGoogle Scholar
  52. 52.
    Seidlitz, H.K., Döhring, T., Köfferlein, M., Payer, H.D., Thiel, S. (1995) Provision of artificial UV irradiation for experimental plant ecology. In: H. Bauer, C. Nolan (eds.) Proceedings of the European Symposium on effects of environmental UV radiation, Munich, Germany October 27–29 1993, EUR 15607 EN, DG, XII, EC Brussels, pp. 161-164.Google Scholar
  53. 53.
    Siebert, J., Hirsch, P. (1988), Characterization of 15 selected coccal bacteria isolated from Antarctic rock and soil samples from the McMurdo-Dry Valleys (South Victoria land). Polar Biol., 9, 37–44.CrossRefGoogle Scholar
  54. 54.
    Stetter, K.O. (1996) Hyperthermophilic prokaryotes. FEMS Microbiol. Rev. 18, 149–158.CrossRefGoogle Scholar
  55. 55.
    Stevens, T.O., McKinley, J.P. (1995) Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270, 450–454.ADSCrossRefGoogle Scholar
  56. 56.
    Varghese, A.J. (1970) 5-Thyminyl-5,6-dihydrothymidine from DNA irradiated with ultraviolet light. Biochim. Biophys. Res. Coma 38, 484–490.CrossRefGoogle Scholar
  57. 57.
    Vishniac, H.S. (1993) The microbiology of Antarctic soils. In: E. Friedmann (ed.) Antarctic Microbiology, Wiley-Liss, New York, pp. 297–341.Google Scholar
  58. 58.
    Watanabe, M., Furuya, M., Mioshi, Y., Inoue, Y., Iwahashi, I., Matsumoto, K. (1982) Design and performance of the Okazaki large spectrograph for photobiological research. Photochem. Photobiol. 36, 491–498.CrossRefGoogle Scholar
  59. 59.
    Weber, P., Greenberg, J.M. Can spores survive in interstellar space? Nature 316, 403–407.Google Scholar
  60. 60.
    Wehner J., Horneck, G. (1995) Effects of vacuum UV and UVC radiation on dry E. coli plasmid pUC19. I. Inactivation, lacZ mutation induction and strand breaks. J. Photochem. Photobiol. B: Biol. 28, 77–85.CrossRefGoogle Scholar
  61. 61.
    Weisbrod, U., Bücker, H., Horneck, G., Kraft, G. (1992) Heavy-ion effects on bacterial spores: the impact parameter dependence of the inactivation. Rad. Res. 129, 250–257.CrossRefGoogle Scholar
  62. 62.
    Wormsley, C. (1981) Biochemical and physiological aspects of anhydrobiosis. Comp. Biochem. Physiol. 70B, 669.Google Scholar
  63. 63.
    Wynn-Williams, D.D. (1996). Response of pioneer microbial colonists to environmental change in Antarctica. Microbial Ecology 31, 177–188.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Gerda Horneck
    • 1
  1. 1.Institute of Aerospace Medicine, Radiation BiologyDLRCologneGermany

Personalised recommendations