Laboratory Astrophysics and Space Research pp 667-685 | Cite as
Astrobiology studies of microbes in simulated interplanetary space
Abstract
For laboratory studies on the responses of resistant life forms to simulated interplanetary space conditions, testbeds are available that simulate the parameters of space, such as vacuum, solar electromagnetic and cosmic ionizing radiation, temperature extremes and reduced gravity that can be applied separately, or in selected combinations. Appropriate biological test systems are extremophiles, i.e. microorganisms that are adapted to grow, or survive in extreme conditions of our biosphere. Examples are airborne microbes, endolithic or endoevaporitic microbial communities, or bacterial endospores. Such studies contribute to answer several questions pertinent to astrobiology, such as (i) the role of solar UV radiation in genetic stability, (ii) the role of gravity in basic biological functions, (iii) the probability and limits for interplanetary transfer of life, (iv) strategies of adaptation to environmental extremes, and (v) the needs for planetary protection.
Keywords
Interplanetary Space Bacterial Spore Matic Phase Change Subtilis Spore Bacillus Subtilis SporePreview
Unable to display preview. Download preview PDF.
References
- 1.Abyzov, S.S. (1993) Microorganisms in the Antarctic ice. in: E. Friedmann (ed.) Antarctic Microbiology, Wiley-Liss, New York, pp. 265–295.Google Scholar
- 2.Arrhenius, S. (1903) Die Verbreitung des Lebens im Weltenraum. Die Umschau 7, 481–485.Google Scholar
- 3.Battista, J.R. (1997) Against all odds: the survival strategies of Deinococcus radiodurans. Ann. Rev. Microbiol. 51, 203–224.CrossRefGoogle Scholar
- 4.Brueschke, E.E., Suess, R.H., Willard M. (1961) The viability of microorganisms in ultra-high vacuum. Planet. Space Sci. 8, 30–34.ADSCrossRefGoogle Scholar
- 5.Bücker, H., Horneck, G. (1970) Survival of microorganisms under simulated space conditions. Life Sci. Space Res. 8, 33–38.Google Scholar
- 6.Bücker, H., Horneck, G. (1975) Studies on the effects of cosmic HZE-particles on different biological systems in the Biostack I and II flown on board of Apollo 16 and 17. In: O.F. Nygaard, H.J. Adler, W.K. Sinclair (eds.) Radiation Research, Academic Press, New York, pp. 1138–1151.Google Scholar
- 7.Cadet, J., Voituriez, L., Grand, A., Hruska, F.E., Vigny, P., Kan, L.S. (1985) Photosensitized reactions of nucleic acids. Biochimie 67, 277.CrossRefGoogle Scholar
- 8.Cadet, J., Weinfeld, (1993) Detecting DNA damage. Anal. Chem. 65, 675A–682A.Google Scholar
- 9.Cox, C.S. (1993) Roles of water molecules in bacteria and viruses. Origins of Life and Evolution of the Biosphere, 23, 29–36.ADSCrossRefGoogle Scholar
- 10.Crowe, L.M., Crowe J.H. (1992) Anhydrobiosis: a strategy for survival. Adv. Space Res. 12, (4)239-(4)247.Google Scholar
- 11.Dodonova, N.Ya., Kiseleva, M.N., Remisova, L.A., Tsyganenko, N.M. (1982) The vacuum ultraviolet photochemistry of nucleotides. Photochem. Photobiol. 35, 129–132.CrossRefGoogle Scholar
- 12.Dose, K., Bieger-Dose, A., Labusch, M., Gill, M. (1992) Survival in extreme dryness and DNA single-strand breaks. Adv. Space Res. 12, (4)221-(4)229.Google Scholar
- 13.Foster, T.L., Winanas, L. Jr., Casey, R.C., Kirschner, L.E. (1978) Response of terrestrial microorganisms to simulated Martian environment. Appl. Environ. Microbiol. 35, 730–737.Google Scholar
- 14.Frankenberg-Schwager, M., Bücker, H., Wollenhaupt, H. (1974) Survivability of microorganisms in space and its impact on planetary exploration. Raumfahrtforschung, 5, 209–212.ADSGoogle Scholar
- 15.Friedberg, E.C., Walker, G.C., Siede, W. (1995) DNA Repair and Mutagenesis. ASM Press, Washington.Google Scholar
- 16.Friedmann, E.I. (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215, 1045–1053.ADSCrossRefGoogle Scholar
- 17.Friedmann, E.I. (1993) Antarctic Microbiology, Wiley-Liss, New York.Google Scholar
- 18.Gilichinsky, D.A., Soina, V.S., Petrova, M.A. (1993) Cryoprotective properties of water in the Earth cryo-lithosphere and its role in exobiology. Origins of Life 23, 65–75.CrossRefGoogle Scholar
- 19.Gladman, B. (1997) Destination: Earth. Martian meteorite delivery. Icarus, 130, 228–246.ADSCrossRefGoogle Scholar
- 20.Hemmersbach, R., Voormanns, R., Hader, D.-P. (1996) Graviresponses in Paramecium biaurelia under different accelerations — studies on the ground and in space. J. Exp. Biol. 199, 2199–2205.Google Scholar
- 21.Horneck, G., (1981) Survival of microorganisms in space: areview. Adv. Space Res. 1, (14)39-(14)48.Google Scholar
- 22.Horneck, G. (1992) Radiobiological experiments in space: a review. Nucl. Tracks Radiat. Meas. 20, 185–205.CrossRefGoogle Scholar
- 23.Horneck, G. (1993) Responses of Bacillus subtilis spores to space environment: results from experiments in space. Origins of Life 23, 37–52.CrossRefGoogle Scholar
- 24.Horneck, G. (1995a) Exobiology, the study of the origin, evolution and distribution of life within the context of cosmic evolution: areview. Planet. Space Sci. 43, 189–217.ADSCrossRefGoogle Scholar
- 25.Horneck, G. (1995b) Quantification of the biological effectiveness of environmental UV radiation. J. Photo-chem. Photobiol. B: Biol. 31, 43–49.CrossRefGoogle Scholar
- 26.Horneck, G., Bücker, H., Wollenhaupt, H. (1971) Survival of bacterial spores under some simulated lunar surface conditions. Life Sci. Space Res. 9, 119–124.Google Scholar
- 27.Horneck, G., Bücker, H., Reitz, G., Requardt, H., Dose, K., Martens, K.D., Mennigmann, H.D., Weber, P. (1984) Microorganisms in the space environment. Science 225, 226–228.ADSCrossRefGoogle Scholar
- 28.Horneck, G., Bücker, H., Reitz, G., (1994) Long-term survival of bacterial spores in space. Adv. Space Res. (10)41-(10)45.Google Scholar
- 29.Horneck, G., Eschweiler, U., Reitz, G., Wehner, J., Willimek, R., Strauch, K. (1995) Biological responses to space: results of the experiment „Exobiological Unit“ of ERA on EURECA I. Adv. Space Res., 16(8), 105.ADSCrossRefGoogle Scholar
- 30.Imshenetsky, A.A., Lysenko, D.V., Kazakov, G.A. (1978) Upper boundary of the biosphere. Appl. Environm. Microbiol. 35, 1–5.Google Scholar
- 31.Ito, T. (1989) Vacuum ultraviolet photobiology with synchrotron radiation, In: R.M. Sweet, A.D. Wood-head (eds.), Symchrotron Radiation in Structured Biology, Plenum, New York, pp. 221–241.CrossRefGoogle Scholar
- 32.Kappen, L. (1973) Response to extreme environments. In: Ahmadjian, V., Hale, M.E. (eds.) The Lichens III. 10, Academic Press, New York, pp. 311–380.CrossRefGoogle Scholar
- 33.Keller, B., Horneck, G. (1992) Action spectra in the vacuum UV and far UV /122 — 30 nm) for inactivation of wet and vacuum-dry spores of Streptomyces griseus and photoreactivation. J. Photochem. Photobiol. B:Biol. 16, 61–72.CrossRefGoogle Scholar
- 34.Kiefer, J., Kost, M., Schenk-Meuser, K. (1996) Radiation biology. In: D. Moore, P. Bie and H. Oser (eds.) Biological and Medical Research in Space, Springer, Berlin, pp. 300–367.CrossRefGoogle Scholar
- 35.Koike, J., Oshima, T., Koike, K., Taguchi, H., Tanaka, R., Nishimura, K., Miyaji, M. (1992) Survival rates of some terrestrial microorganisms under simulated space conditions. Adv. Space Res. 12, (4)271-(4)274.Google Scholar
- 36.Kolbel-Boekel, J., Anders, E., Nehrkorn, A (1988) Microbial communities in the saturated groundwater environment, II. Diversity of bacterial communities in a Pleistocene sand aquifer and their in vitro activities. Microbial Ecology 16, 31–48.CrossRefGoogle Scholar
- 37.Lindberg, C, Horneck, G. (1991) Action spectra for survival and spore photoproduct formation of Bacillus subtilis irradiated with short wavelength (200–300 nm) UV at atmospheric pressure and in vacuo. J. Photochem. Photobiol. B:Biol. 11, 69–80.CrossRefGoogle Scholar
- 38.Mancinelli, R. L., White, M. R., Rothschild L. J. (1998) Biopan-survival I: exposure of osmophilic microbes to the space environment. Adv. Space Res. (in press).Google Scholar
- 39.Mancinelli, R.L. (1989) Peroxides and the survivability of microorganisms on the surface of Mars. Adv. Space Res. 9, (6)191-(6)195.Google Scholar
- 40.Melosh, H.J. (1988) The rocky road to Panspermia. Nature 332, 687–688.ADSCrossRefGoogle Scholar
- 41.Moll, D.M., Vestal, J.R. (1993) Survival of microorganisms in smectite clays: implications for Martian exobiology. Icarus 98, 233–239.ADSCrossRefGoogle Scholar
- 42.Moreno, M.A. (1988) Microorganism transport from Earth to Mars. Nature 336, 209.ADSCrossRefGoogle Scholar
- 43.Munakata, N., Hieda, k., Kobayashi, K., Ito, T (1986) Action spectra in the ultraviolet wavelength (150–250 nm) for inactivation and mutagenesis ofBacillus subtilis spores obtained with synchrotron radiation. Photochem. Photobiol. 44, 385–390.CrossRefGoogle Scholar
- 44.Munakata, N., Saitou, M., Takahashi, N., Hieda, K., Morohoshi, F.(1997) Induction of unique tandem-double change mutations in bacterial spores exposed to extreme dryness. Mutation Research, 390, 189–195.CrossRefGoogle Scholar
- 45.Nussinov, M.D., Lysenko, S.V. (1983) Cosmic vacuum prevents radiopanspermia. Origins of Life, 13, 153–164.ADSCrossRefGoogle Scholar
- 46.Potts, M. (1994) Desiccation tolerance of prokaryotes. Microbiol. Rev. 58, 755–805.Google Scholar
- 47.Richter, H. (1865) Zur Darwinschen Lehre. Schmidts Jahrbuch Ges. Med. 126, 243–249.Google Scholar
- 48.Rothschild, L.J., Giver, L.J., White, MR., Mancinelli, R.L. (1994) Metabolie activity of microorganisms in evaporites. J. Phycol. 30, 431–438.CrossRefGoogle Scholar
- 49.Rummel, L.D. (1992) Planetary protection policy (USA). Adv. Space Res. 12, (4)129-(4)131.Google Scholar
- 50.Schäfer, M., Facius, R., Reitz, G. (1994) Inactivation of individual Bacillus subtilis spores in dependence of their distance to single accelerated heavy ions. Adv. Space Res. 14, (10)1039-(10)1046.Google Scholar
- 51.Seckmeyer G. and Payer H.D., 1993, A new sunlight simulator for ecological research on plants. J. Photo-chem. Photobiol. B: Biol. 21, 175–181.CrossRefGoogle Scholar
- 52.Seidlitz, H.K., Döhring, T., Köfferlein, M., Payer, H.D., Thiel, S. (1995) Provision of artificial UV irradiation for experimental plant ecology. In: H. Bauer, C. Nolan (eds.) Proceedings of the European Symposium on effects of environmental UV radiation, Munich, Germany October 27–29 1993, EUR 15607 EN, DG, XII, EC Brussels, pp. 161-164.Google Scholar
- 53.Siebert, J., Hirsch, P. (1988), Characterization of 15 selected coccal bacteria isolated from Antarctic rock and soil samples from the McMurdo-Dry Valleys (South Victoria land). Polar Biol., 9, 37–44.CrossRefGoogle Scholar
- 54.Stetter, K.O. (1996) Hyperthermophilic prokaryotes. FEMS Microbiol. Rev. 18, 149–158.CrossRefGoogle Scholar
- 55.Stevens, T.O., McKinley, J.P. (1995) Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270, 450–454.ADSCrossRefGoogle Scholar
- 56.Varghese, A.J. (1970) 5-Thyminyl-5,6-dihydrothymidine from DNA irradiated with ultraviolet light. Biochim. Biophys. Res. Coma 38, 484–490.CrossRefGoogle Scholar
- 57.Vishniac, H.S. (1993) The microbiology of Antarctic soils. In: E. Friedmann (ed.) Antarctic Microbiology, Wiley-Liss, New York, pp. 297–341.Google Scholar
- 58.Watanabe, M., Furuya, M., Mioshi, Y., Inoue, Y., Iwahashi, I., Matsumoto, K. (1982) Design and performance of the Okazaki large spectrograph for photobiological research. Photochem. Photobiol. 36, 491–498.CrossRefGoogle Scholar
- 59.Weber, P., Greenberg, J.M. Can spores survive in interstellar space? Nature 316, 403–407.Google Scholar
- 60.Wehner J., Horneck, G. (1995) Effects of vacuum UV and UVC radiation on dry E. coli plasmid pUC19. I. Inactivation, lacZ mutation induction and strand breaks. J. Photochem. Photobiol. B: Biol. 28, 77–85.CrossRefGoogle Scholar
- 61.Weisbrod, U., Bücker, H., Horneck, G., Kraft, G. (1992) Heavy-ion effects on bacterial spores: the impact parameter dependence of the inactivation. Rad. Res. 129, 250–257.CrossRefGoogle Scholar
- 62.Wormsley, C. (1981) Biochemical and physiological aspects of anhydrobiosis. Comp. Biochem. Physiol. 70B, 669.Google Scholar
- 63.Wynn-Williams, D.D. (1996). Response of pioneer microbial colonists to environmental change in Antarctica. Microbial Ecology 31, 177–188.CrossRefGoogle Scholar