Biodiversity in Ecosystems: Some Principles

  • Anselm Kratochwil
Part of the Tasks for vegetation science book series (TAVS, volume 34)


A scientific treatment of biodiversity must aim at the development of a generally valid theory, for only in this way, the scientific foundations for pragmatic approaches to the preservation of biodiversity can be worked out. This is also embodied in the “International Convention” on the protection and conservation of biodiversity, which was passed at the United Nations’ conference “Environment and Development” at Rio de Janeiro in 1992, and has meanwhile been ratified by numerous nations. In this article, a definition of the concept “biodiversity” will be given, and partly synonymously used terms, like “variation”, “differentiation”, “diversification”, “heterogeneity”, “variety”, “variability”, “complexity”, and “richness” be differentiated. As matter and energy occur in very different organization forms and on varying hierarchy levels, it is necessary to delimit first those areas in which biodiversity phenomena appear.

An essential prerequisite for a scientific investigation of the diversity of biocoenoses and ecosystems is the theoretical examination of opposing positions: holistic approach versus individualistic approach, deterministic approach versus stochastic approach. Central questions are studied, concerning also ecology in general.

The varying forms of biodiversity can basically be assigned to four different groups: diversity of elements (element pattern of biodiversity), diversity of interactions (dynamic pattern of biodiversity), mechanisms causing diversity (causing pattern of biodiversity), and process of functioning (functional pattern of biodiversity). Examples will be given for each group. “Intrabiocoenotic diversity” includes the diversity of phytocoenoses, zoocoenoses, and synusia. A classification into synusia should follow stratotope, choriotope, and merotope patterns. “Interbiocoenotic diversity”, on the other hand, refers to the diversity of landscape parts (vegetation complexes) and landscapes (vegetation complexes occurring together). Some fundamental relations will be outlined.

On the basis of the comprehensive discussion of biodiversity criteria in the literature, 30 hypotheses on biodiversity will be presented and explained. A final chapter deals with the importance of the theory of biodiversity in applied nature protection. The preservation of biodiversity is a basic component of the survival programme “sustainable development”.


biocoenology biodiversity community ecology community research structural and functional diversity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aho, J. 1978. Freshwater snail populations and equilibrium theory of island biogeography. I. A case study in southern Finland. Ann. Zool. Fenn. 15: 146–154.Google Scholar
  2. Akeroyd, J. 1996. What really is biodiversity? Plant Talk 4: 2.Google Scholar
  3. Andon, D.A. 1991. Vegetational diversity and arthropod population response. Ann. Rev. Entomol. 36: 561–568.Google Scholar
  4. Arrhenius, O. 1921. Species and area. J. Ecol. 9: 95–99.Google Scholar
  5. Arrow, K.J. & Fisher, A.C. 1974. Environmental preservation, uncertainty and irreversibility. Quart. J. Econom. 88 (2): 312–319.Google Scholar
  6. Aßmann, T. & Kratochwil, A. 1995. Biozönotische Untersuchungen in Hudelandschaften Nordwestdeutschlands — Grundlagen und erste Ergebnisse. Osnabrücker Naturwiss. Mitt. 20/21: 275–337.Google Scholar
  7. Benno, P. 1941. Een tweetal zeldsame bijen uit de Lyers, met aantekeningen bij een nest van Osmia papaveris Latr. Entomol. Ber. 238: 311–315.Google Scholar
  8. Bisby, F.A. 1995. Characterization of biodiversity, pp. 21–57. In: Heywood, V.H. & Watson, R.T. (eds), Global Biodiversity Assessment.Google Scholar
  9. Bishop, R.C. 1978. Endangered species and uncertainty: the economics of a safe minimum standard. Amer. J. Agricult. Econom. 60 (1): 10–18.Google Scholar
  10. Blab, J., Klein, M. & Ssymank, A. 1995. Biodiversität und ihre Bedeutung in der Naturschutzarbeit. Natur u. Landsch. 70 (1): 11–18.Google Scholar
  11. Blackburn, T.M. & Gaston, K.J. 1994. Animal body size distributions: patterns, mechanisms and implications. TREE 9: 471–474.Google Scholar
  12. Brown, J.H. 1971. Mammals on mountaintops: nonequilibrium insular biogeography. Amer. Nat. 105: 467–478.Google Scholar
  13. Buckley, R.C. 1982. The habitat-unit model of island biogeography. J. Biogeogr. 9: 339–344.Google Scholar
  14. Buckley, R.C. 1985. Distinguishing the effects of area and habitat type on island plant species richness by separating floristic elements and substrate types and controlling for island isolation. J. Biogeogr. 12: 527–535.Google Scholar
  15. Burrichter, E. 1984. Baumformen und Relikte ehemaliger Extensivwirtschaft in Nordwestdeutschland. Drosera 1: 1–18.Google Scholar
  16. Carson, H.L. & Kaneshiro, K.Y. 1976. Drosophila of Hawaii: systematics and ecological genetics. Ann. Rev. Ecol. Syst. 7:311–345.Google Scholar
  17. Carson, H.L., Hardy D.E., Spieth, H.T. & Stone, W.S. 1970. The evolutionary biology of the Hawaiian Drosophilidae. pp. 437–543. In: Hecht, M.K. & Steere, W.C. (eds), Essays in Evolution and Genetics in Honor of Theodosius Dobzhansky. Appleton-Century Crofts.Google Scholar
  18. Cohen, J.E. 1978. Foods Webs and Niche Space. Princeton Univ. Press, Princeton.Google Scholar
  19. Connell, J.H. 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1302–1309.Google Scholar
  20. Connell, J.H. & Slatyer, R.O. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. Amer. Nat. 111: 1119–1144.Google Scholar
  21. Connor, E.F. & McCoy, E.D. 1979. The statistics and biology of the species-area relationship. Amer. Nat. 113: 791–829.Google Scholar
  22. Cornell, H.V. 1993. Unsaturated patterns in species assemblages: The role of regional processes in setting local species richness, pp. 243–252. In: Ricklefs, R.E. & Schluter, D. (eds), Species Diversity in Ecological Communities. Univ. Chicago Press, Chicago, London.Google Scholar
  23. Courrier, K. 1992. Global Biodiversity Strategy — Guidelines for Action to Save, Study, and Use Earth’s Biotic Wealth Sustainably and Equitably. IUCN, Gland.Google Scholar
  24. Currie, D.J. 1991. Energy and large scale patterns of animal and plant species richness. Amer. Nat. 137: 27–49.Google Scholar
  25. Dafni, A., Ivri, Y. & Brantjes, N.B.M. 1981. Pollination of Serapias vomeracea Briq. (Orchidaceae) by imitation of holes for sleeping solitary male bees (Hymenoptera). Acta Bot. Neerl. 30 (1/2): 69–73.Google Scholar
  26. Darlington, P.J. 1957. Zoogeography. John Wiley, New York.Google Scholar
  27. Dean, R.L. & Connell, J.H. 1987a. Marine invertebrates in algal succession. I. Tests of hypotheses to explain changes in diversity with succession. J. Exp. Mar. Biol. Ecol. 109: 217–247.Google Scholar
  28. Dean, R.L. & Connell J.H. 1987b. Marine invertebrates in algal succession. II. Mechanisms linking habitat complexity with diversity. J. Exp. Mar. Biol. Ecol. 109: 249–273.Google Scholar
  29. Diamond, J.M. 1972. Biogeographic kinetics: estimation of relaxation times for avifaunas of Southwest Pacific islands. Proc. Nat. Acad. Sci. USA 69: 3199–3203.Google Scholar
  30. Diamond, J.M. 1973. Distributional ecology of New Guinea birds. Science 179: 59–769.Google Scholar
  31. Diamond, J.M. 1988. Factors controlling species diversity: overview and synthesis. Ann. Missouri Bot. Gard. 75: 117–129.Google Scholar
  32. Diamond, J.M. & Mayr, E. 1976. Species-area relation for birds of the Solomon Archipelago. Proc. Nat. Acad. Sci. USA 73 (1): 262–266.Google Scholar
  33. Dierschke, H. 1994. Pflanzensoziologie: Grundlagen und Methoden. Ulmer Verlag, Stuttgart.Google Scholar
  34. Douglas, M. & Lake, P.S. 1994. Species richness of stream stones: an investigation of the mechanism generating the species-area relationship. Oikos 69: 387–396.Google Scholar
  35. During, H.J. et al. 1988. Diversity and pattern in plant communities. The Hague.Google Scholar
  36. Ehrendorfer, F. 1962. Cytotaxonomische Beiträge zur Genese der mitteleuropäischen Flora und Vegetation. Ber. Dtsch. Bot. Ges. 75 (5): 137–152.Google Scholar
  37. Eickwort, G.C. & Ginsberg H.S. 1980. Foraging and mating behavior in Apoidea. Ann. Rev. Entomol. 25: 241–246.Google Scholar
  38. Elton, C. 1933. The Ecology of Animals. Methuen, London.Google Scholar
  39. Eriksson, O. 1993. The species-pool hypothesis and plant community diversity. Oikos 68: 371–374.Google Scholar
  40. Eriksson, O., Hansen, A. & Sunding, P. 1974. Flora of Macaronesia: Checklist of Vascular Plants. Univ. of Umeå, Sweden.Google Scholar
  41. Evoy, W.H. & Jones, B. 1971. Motor patterns of male Euglossine bees evoked by floral fragrances. Anim. Behav. 19: 583–588.Google Scholar
  42. Feeny, P. 1976. Plant apparency and chemical defence. Rec. Adv. Phytochem. 10: 1–40.Google Scholar
  43. Forman, R.T.T., Galli, A.E. & Leck, C.F. 1976. Forest size and avian diversity in New Jersey woodlots with some land use implications. Oecologia 26: 1–8.Google Scholar
  44. Frankel, O.H., Brown, A.H.D. & Burdon, J.J. 1995. The Conservation of Plant Biodiversity. Cambridge Univ. Press, Cambridge.Google Scholar
  45. Gadgil, M. 1987. Diversity: cultural and biological. TREE 2 (12): 369–373.Google Scholar
  46. Galli, A.E., Leck, C.F. & Forman, R.T. 1976. Avian distribution patterns in forest islands of different sizes in central New Jersey. Auk 93: 356–365.Google Scholar
  47. Gaston, K.J. 1992. Regional numbers of insects and plant species. Funct. Ecol. 6: 243–247.Google Scholar
  48. Gleason, H. 1926. The individualistic concept of the plant association. Bull. Torr. Bot. Club 53: 1–20.Google Scholar
  49. Goetze, D. & Schwabe, A. 1997. Levels of biodiversity at different scales in space. Poster 40th Annual Symposium of the IAVS, Budweis 1997.Google Scholar
  50. Goodall, D.W. 1952. Quantitative aspects of plant distribution. Biol. Rev. 27: 194–245.Google Scholar
  51. Greig-Smith, P. 1964. Quantitative Plant Ecology, pp. 151–157. Butterworths, London.Google Scholar
  52. Groombridge, B. 1992. Global Biodiversity — Status of Earth’s Living Sources. A Report Compiled by the World Conservation Monitoring Centre. Chapman & Hall, London.Google Scholar
  53. Günther, K. 1950. Ökologische und funktionelle Anmerkungen zur Frage des Nahrungserwerbs bei Tiefseefischen mit einem Exkurs über die ökologischen Zonen und Nischen, pp. 55–93. In: Grüneberg, H. & Ulrich, W. (eds), Moderne Biologie. Festschrift zum 60. Geburtstag von Hans Nachtsheim. Berlin.Google Scholar
  54. Haber, W. 1978. Fragestellung und Grundbegriffe der Ökologie, pp. 74–79. In: Buchwald, K. & Engelhardt, W. (eds), Handbuch für Planung, Gestaltung und Schutz der Umwelt. Bd I. Die Umwelt des Menschen. München, Bern, Wien.Google Scholar
  55. Haber, W. (in this volume). Conservation of biodiversity — scientific standards and practical realization.Google Scholar
  56. Haeupler, H. 1997. Zur Phytodiversität Deutschlands: Ein Baustein zur globalen Biodiversitätsbilanz. Osnabrücker Naturw. Mitt. 23: 123–133.Google Scholar
  57. Hamilton, T.H., Barth, R.H. Jr. & Rubinoff, I. 1964. The environmental control of insular variation in bird species abundance. Proc. Nat. Acad. Sci. USA 52: 132–140.Google Scholar
  58. Hart, D.D. & Horwitz, R.J. 1991. Habitat diversity and the species-area relationship: alternative models and tests, pp. 47–68. In: Bell, S.S., McCoy, E.D. & Mushinsky, H.R. (eds), Habitat Structure: The Physical Arrangement of Objects in Space. Chapman & Hall, London.Google Scholar
  59. Hawksworth, D.L. 1995. Biodiversity — Measurement and Estimation. Chapman & Hall, London.Google Scholar
  60. Heywood, V.H. & Baste, I. 1995. Introduction, pp. 5–19. In: Heywood, V.H. & Watson, R.T. (eds), Global Biodiversity Assessment. Cambridge Univ. Press, Cambridge.Google Scholar
  61. Heywood, V.H. & Watson, R.T. 1995. Global Biodiversity Assessment. Cambridge Univ. Press, Cambridge.Google Scholar
  62. Hocking, B. & Sharplin, C.D. 1965. Flower basking by Arctic insects. Nature 4980: 215.Google Scholar
  63. Huston, M.A. 1985. Patterns of species diversity on coral reefs. Ann. Rev. Ecol. Syst. 16: 149–177.Google Scholar
  64. Huston, M.A. 1994. Biological Diversity — the Coexistence of Species on Changing Landscapes. Cambridge Univ. Press, Cambridge.Google Scholar
  65. Johnson, M.P. & Raven, P.H. 1973. Species number and endemism: the Galapagos archipelago revisited. Science 179: 893–895.Google Scholar
  66. Johnson, M.P. & Simberloff, D. 1974. Environmental determinants of island species numbers in the British Isles. J. Biogeogr. 1: 149–154.Google Scholar
  67. Jurvik, J.O. & Austring, A.P. 1979. The Hawaiian avifauna: biogeographic theory in evolutionary time. J. Biogeogr. 6: 205–224.Google Scholar
  68. Karr, J. 1981. Population variability and extinction in the avifauna of a tropical land bridge island. Ecology 63: 1975–1978.Google Scholar
  69. Kevan, P.G. 1975. Sun-tracking solar furnaces in high Arctic flowers: significance for pollen and insects. Science 189: 723–726.Google Scholar
  70. Kim, K.C & Weaver, R.D. 1995. Biodiversity and Landscapes — a Paradox of Humanity. Cambridge Univ. Press, Cambridge.Google Scholar
  71. Kohn, D.D. & Walsh, D.M. 1994. Plant species richness — the effect of island size and habitat diversity. J. Ecol. 82: 367–377.Google Scholar
  72. Koepcke, H.W. 1971, 1973, 1974. Die Lebensformen. 2 Bde. Goecke und Evers, Krefeld.Google Scholar
  73. Köppler, D. 1995. Vegetationskomplexe von Steppenheide-Physiotopen im Juragebirge. Diss. Bot. 249: 1–228. Cramer, Stuttgart, Berlin.Google Scholar
  74. Köppler, D. & Schwabe, A. 1995. Typisierung und landschaftsökologische Gliederung S- und W-exponierter “Steppenheiden” mit Hilfe von Vegetationskomplexen. Ber. d. Reinh.-Tüxen-Ges. 8: 159–192.Google Scholar
  75. Kratochwil, A. 1983. Zur Phänologie von Pflanzen und blütenbesuchenden Insekten (Hymenoptera, Lepidoptera, Diptera, Coleoptera) eines versaumten Halbtrockenrasens im Kaiserstuhl — ein Beitrag zur Erhaltung brachliegender Wiesen als Lizenzbiotope gefährdeter Tierarten. Beih. Veröff. Naturschutz Landschaftspflege Bad.-Württ. 34: 57–108.Google Scholar
  76. Kratochwil, A. 1984. Pflanzengesellschaften und Blütenbesuchergemeinschaften: biozönologische Untersuchungen in einem nicht mehr bewirtschafteten Halbtrockenrasen (Mesobrometum) im Kaiserstuhl (Südwestdeutschland). Phytocoenologia 11 (4): 455–669.Google Scholar
  77. Kratochwil, A. 1987. Zoologische Untersuchungen auf pflanzensoziologischem Raster — Methoden, Probleme und Beispiele biozönologischer Forschung. Tuexenia 7: 13–53.Google Scholar
  78. Kratochwil, A. 1988a. Zur Bestäubungsstrategie von Pulsatilla vulgaris Mill. Flora 181: 261–325.Google Scholar
  79. Kratochwil, A. 1988b. Morphologische Untersuchungen im Blütenbereich in der Ontogenie von Pulsatilla vulgaris Mill, und ihre Bedeutung bei der Sippenabgrenzung. Bauhinia 9 (1): 15–26.Google Scholar
  80. Kratochwil, A. 1989. Community structure of flower-visiting insects in different grassland types in Southwestern Germany (Hymenoptera Apoidea, Lepidoptera, Diptera). Spixiana 12 (3): 289–302.Google Scholar
  81. Kratochwil, A. 1991a. Zur Stellung der Biozönologie in der Biologie, ihre Teildisziplinen und ihre methodischen Ansätze. Beih. 2 Verh. Ges. f. Ökologie: 9–44.Google Scholar
  82. Kratochwil, A. 1991b. Blüten-/Blütenbesucher-Konnexe: Aspekte der Co-Evolution, der Co-Phänologie und der Biogeographie aus dem Blickwinkel unterschiedlicher Komplexitätsstufen. Annali di Botanica Vol IL: 43–108.Google Scholar
  83. Kratochwil, A. 1996. Die Umweltkrise aus ökologischer Sicht — Historische Entwicklung und aktuelle Bilanz. pp. 7–152. In: Evangelische Akademie Baden (ed), Zukunft für die Erde, Bd 2: Dimensionen der ökologischen Krise. Herrenaiber Protokolle 110.Google Scholar
  84. Kratochwil, A. 1998. Zur Gültigkeit der Inseltheorie bei Festland-Ökosystemen — eine kritische Betrachtung auch für den Naturschutz. Braunschw. Geobot. Arb. 5: 7–37.Google Scholar
  85. Kratochwil, A. & Klatt, M. 1989a. Apoide Hymenopteren der Stadt Freiburg i. Br. — submediterrane Faunenelemente an Standorten kleinräumig hoher Persistenz. Zool. Jb. Syst. 116: 379–389.Google Scholar
  86. Kratochwil, A. & Klatt, M. 1989b. Wildbienengemeinschaften (Hymenoptera Apoidea) an spontaner Vegetation im Siedlungsbereich der Stadt Freiburg. Braun-Blanquetia 3 (2): 421–438.Google Scholar
  87. Kratochwil, A. & Aßmann, T. 1996a. Biozönotische Konnexe im Vegetationsmosaik nordwestdeutscher Hudelandschaften. Ber. d. Reinh.-Tüxen-Ges. 8: 237–282.Google Scholar
  88. Kratochwil, A. & Aßmann, T. 1996b. Biozönologische Untersuchungen in Hudelandschaften des nordwestdeutschen Tieflandes. Verh. Ges. f. Ökologie 26: 229–237.Google Scholar
  89. Krattinger, A.F., McNeely J.A., Lesser, W.H., Miller, K.R., Hill, Y.St. & Senanayke, R. (eds). 1994. Widening Perspectives on Biodiversity. IUCN, Gland.Google Scholar
  90. Krebs, C.J. 1989. Ecological Methodology. Harper & Row, New York, Cambridge.Google Scholar
  91. Kugler, H. 1970. Einführung in die Blütenökologie. 2nd ed. Fischer Verlag, Stuttgart.Google Scholar
  92. Kullenberg, B. 1961. Studies on Ophrys pollination. Zool. Bidr. Uppsala 34: 1–340.Google Scholar
  93. Lack, D.L. 1947. Darwin’s Finches. Cambridge Univ. Press, Cambridge.Google Scholar
  94. Lack, D.L. 1969. The number of bird species on islands. Bird Study 16: 193–209.Google Scholar
  95. Lassen, H.H. 1975. The diversity of freshwater snails in view of the equilibrium theory of island biogeography. Oecologia 19: 1–8.Google Scholar
  96. Latham, R.E. & Ricklefs, R.E. 1993. Global patterns of tree species richness in moist forests: energy-diversity theory does not account for variation in species richness. Oikos 67: 325–333.Google Scholar
  97. Lawton, J.H. & Brown, V.K. 1993. Redundancy in ecosystems, pp. 255–270. In: Schulze, E.-D. & Mooney, H.A. (eds), Biodiversity and Ecosystem Function. Ecological Studies 99. Springer Verlag, Berlin, Heidelberg, New York.Google Scholar
  98. Lawton, J.H. 1990. Species richness and population dynamics of animal assemblages. Pattern in body size: abundance space. Phil. Trans. Roy. Soc. London B 330: 283–291.Google Scholar
  99. Lindroth, C.H. 1960. The ground-beetles of the Azores (Coleoptera: Carabidae) with some reflexions on over-seas dispersal. Bol. Mus. Muni. Funchal XIII, Art. 31: 5–48.Google Scholar
  100. Lugo, A. E. 1992. Schätzungen des Rückgangs der Artenvielfalt tropischer Wälder, pp. 76–89. In: Wilson, E.O. (ed), Ende der biologischen Vielfalt? Der Verlust von Arten, Genen und Lebensräumen und die Chancen für eine Umkehr. Springer Verlag, Heidelberg, Berlin, New York.Google Scholar
  101. Lynch, J.F. & Wigham, D.F. 1984. Effects of forest fragmentation on breeding bird communities in Maryland, USA. Biol. Conserv. 28: 287–324.Google Scholar
  102. MacArthur, R.H. & Wilson, E.O. 1967. The Theory of Island Biogeography. Princeton Univ. Press, Princeton, NJ.Google Scholar
  103. Magurran, A.E. 1988. Ecological Diversity and Its Measurement. Princeton Univ. Press, Princeton, NJ.Google Scholar
  104. Matthies, D., Schmid, B. & Schmid-Hempel, P. 1995. The importance of population process for the maintenance of biological diversity. GAIA 4 (4): 199–209.Google Scholar
  105. May, R.M. 1975. Pattern of species abundance and diversity, pp. 81–120. In: Cody, M.L. & Diamond, J.M. (eds), Ecology and Evolution of Communities. Harvard Univ. Press, Cambridge, Mass.Google Scholar
  106. May, R.M. 1978. Dynamics and diversity of insect faunas, pp. 188–204. In: Mound, L.A. & Waloff, N. (eds), Diversity of Insect Fauna. Blackwell Scientific, Oxford.Google Scholar
  107. May, R.M. 1988. How many species are there on earth? Science 241: 1441–1449.Google Scholar
  108. Mayer, D.F. & Johansen C.A. 1978. Bionomics of Meloe niger Kirby (Coleoptera: Meloidae), a predator of the Alkali bee, Nomia melanderi Cockerell (Hymenoptera: Halictidae). Melanderia: 1–22.Google Scholar
  109. Mayr, E. 1943. The Zoogeographie position of the Hawaiian Island. Condor 45: 45–48.Google Scholar
  110. McNeely, J., Miller, K.A., Reid, W.V., Mittermeier, R.A. & Werner, T.B. 1990. Conserving the World’s Biological Diversity. IUCN, Gland, Washington.Google Scholar
  111. Morse, D.H. 1984. How crab spiders (Araneae, Thomisidae) hunt at flowers. J. Arachnol. 12: 307–316.Google Scholar
  112. Myers, N. 1985. Die sinkende Arche: bedrohte Natur, gefährdete Arten. Westermann Verlag, Braunschweig.Google Scholar
  113. O’Connor, N.A. 1991. The effects of habitat complexity on the macroinvertebrates colonizing wood substrates in a lowland stream. Oecologia 85: 504–512.Google Scholar
  114. Oberdorfer, E. 1994. Pflanzensoziologische Exkursionsflora. 7th ed. Ulmer Verlag, Stuttgart.Google Scholar
  115. Odum, E.P. 1971. Fundamentals of Ecology. Saunders Comp., London, Philadelphia, Toronto.Google Scholar
  116. Odum, E.P. 1983. Grundlagen der Ökologie. Thieme Verlag, Stuttgart, New York.Google Scholar
  117. Osche, G. 1966. Grundzüge einer allgemeinen Phylogenetik. pp. 817–906. Handbuch der Biologie III/2. Akad. Verlagsges., Frankfurt.Google Scholar
  118. Osche, G. 1975. Die vergleichende Biologie und die Beherrschung der Mannigfaltigkeit. BIUZ 5: 139–146.Google Scholar
  119. Palmgreen, A. 1925. Die Artenzahl als pflanzengeographischer Charakter. Fennia 46 (2): 1–144.Google Scholar
  120. Paulus, H.F. 1978. Co-Evolution zwischen Blüten und ihren tierischen Bestäubern. Sonderband naturwiss. Ver. Hamburg 2: 51–81.Google Scholar
  121. Paulus, H.F. 1988. Co-Evolution und einseitige Anpassungen in Blüten-Bestäubersystemen: Bestäuber als Schrittmacher in der Blütenevolution. Verh. Dtsch. Zool. Ges. 81: 25–46.Google Scholar
  122. Pickett, S.T.A. & White P.S. 1985. The Ecology of Natural Disturbance and Patch Dynamics. Academic Press, New York.Google Scholar
  123. Pignatti, S. 1983. Human impact on the vegetation of the Mediterranean Basin, pp. 151–161. In: Holzner, W., Werger, M.J.A. & Ikusima, I. (eds), Man’s Impact on Vegetation. Dr W. Junk Publ., The Hague.Google Scholar
  124. Pignatti, G. & Pignatti, S. (in this volume). Biodiversity in Mediterranean ecosystems.Google Scholar
  125. Pott, R. 1995. Die Pflanzengesellschaften Deutschlands. 2nd ed. Ulmer Verlag, Stuttgart.Google Scholar
  126. Pott, R. (in this volume). Diversity of pasture-woodlands of north-western Germany.Google Scholar
  127. Pott, R. & Hüppe, J. 1991. Die Hudelandschaften Nord Westdeutschlands. Abhandl. Westfäl. Mus. Naturkde Münster 53 (1/2): 1–313.Google Scholar
  128. Preston, F.W. 1962. The canonical distribution of commonness and rarity. Ecology 43: 185–215,Google Scholar
  129. Preston, F.W. 1962. The canonical distribution of commonness and rarity. Ecology 43: 410–432.Google Scholar
  130. Rabeler, W. 1957. Die Tiergesellschaft eines Eichen-Birkenwaldes im nordwestdeutschen Altmoränengebiet. Mitt. flor. soz. Arbeitsgem. N.F. 6/7: 297–319.Google Scholar
  131. Rabeier, W. 1960. Die Artenbestände der Regenwürmer in Laubwald-Biozönosen (Querco-Fagetea) des oberen und mittleren Wesergebietes. Mitt. Flor.-soz. Arbeitsgem. N.F. 8: 333–337.Google Scholar
  132. Raunkiaer, C. 1907/1937. Planterigets Livsformer og deres Betydning for Geografien. Kjöbenhavn, Kristiana. Translation into English: Gilbert-Carter, H. 1937: Plant Life-forms. Clarendon Press, Oxford.Google Scholar
  133. Raustiala, K. & Victor, D.G. 1996. Biodiversity since Rio: The Future of the Convention on Biological Diversity. Environment (Washington) 38: 17–20,Google Scholar
  134. Raustiala, K. & Victor, D.G. 1996. Biodiversity since Rio: The Future of the Convention on Biological Diversity. Environment (Washington) 38: 37–43.Google Scholar
  135. Reaka-Kudla, M.L., Wilson, D.E. & Wilson, E.O. (eds). 1997. Biodiversity II. Understanding and Protecting Our Biological Resources. Joseph Henry Press, Washington D.C.Google Scholar
  136. Reed, T. 1981. The number of breeding landbird species on British islands. J. Anim. Ecol. 50: 613–624.Google Scholar
  137. Remmert, H. (ed). 1991. The Mosaic-Cycle Concept of Ecosystems. Ecological Studies 85. Springer, Berlin, Heidelberg, New York.Google Scholar
  138. Ricklefs, R.E. & Cox, G.W. 1972. The taxon cycle in the land bird fauna of the West Indies. Amer. Nat. 106: 195–219.Google Scholar
  139. Ricklefs, R.E. & Schluter, D. (eds). 1993. Species Diversity in Ecological Communities. Historical and Geographical Perspectives. Univ. of Chicago Press, Chicago, London.Google Scholar
  140. Ricklefs, R.E. 1987. Community diversity: Relative roles of local and regional processes. Science 235: 167–171.Google Scholar
  141. Rosenzweig, M.L. 1995. Species Diversity in Space and Time. Cambridge Univ. Press, Cambridge.Google Scholar
  142. Schaefer, M. (in this volume). The diversity of the fauna of two beech forests: some thoughts about possible mechanisms causing the observed patterns.Google Scholar
  143. Schoener, T.W. (1986). Resource partitioning, pp. 91–126. In: Kikkawa, J. & Anderson, D.J. (eds), Community Ecology. Pattern and Process. Blackwell, Melbourne.Google Scholar
  144. Schulze, E.-D. & Mooney, H.A. (eds). 1993. Biodiversity and Ecosystem Function. Ecological Studies 99. Springer, Berlin, Heidelberg, New York.Google Scholar
  145. Schwabe, A. 1990. Stand und Perspektiven der Vegetationskomplex-Forschung. Ber. d. Reinh.-Tüxen-Ges. 2: 45–60.Google Scholar
  146. Schwabe, A. 1991a. A method for the analysis of temporal changes in vegetation pattern at the landscape level. Vegetatio 95: 1–19.Google Scholar
  147. Schwabe, A. 1991b. Perspectives of vegetation complex research and bibliographic review of vegetation complexes in vegetation science and landscape ecology. Excerpta Botanica 28 (Sect. B.): 223–243.Google Scholar
  148. Schwabe, A. 1995. Kochia prostrata (L.) Schrader-reiche Pflanzengesellschaften und Vegetationskomplexe unter besonderer Berücksichtigung des Aostatales. Carolinea 53: 83–98.Google Scholar
  149. Schwabe, A. (in this volume). Spatial arrangements of habitats and biodiversity: an approach to a sigmasociological view.Google Scholar
  150. Schwabe, A. & Mann, P. 1990. Eine Methode zur Beschreibung und Typisierung von Vogelhabitaten, gezeigt am Beispiel der Zippammer (Emberiza cia). Ökologie der Vögel (Ecology of Birds) 12: 127–157.Google Scholar
  151. Schwabe, A., Köppler, D. & Kratochwil, A. 1992. Vegetationskomplexe als Elemente einer landschaftsökologisch-biozönologischen Gliederung, gezeigt am Beispiel von Fels- und Moränen-Ökosystemen. Ber. d. Reinh.-Tüxen-Ges. 4: 135–145.Google Scholar
  152. Schwabe, A. & Kratochwil, A. 1994. Gelten die biozönotischen Grundprinzipien auch für die landschaftsökologische Dimension? Einige Überlegungen mit Beispielen aus den Inneralpen. Phytocoenologia 24: 1–22.Google Scholar
  153. Simberloff, D.S. 1974. Equilibrium theory of island biogeography and ecology. Ann. Rev. Ecol. Syst. 5: 161–182.Google Scholar
  154. Simberloff, D. 1976. Experimental zoogeography of islands: effects of island size. Ecology 57: 629–648.Google Scholar
  155. Simberloff, D. & Cox, J. 1987. Consequences and costs of conservation corridors. Conserv. Biol. 1: 63–71.Google Scholar
  156. Simberloff, D., Farr, J.A., Cox, J. & Mehlmann, D.W. 1992. Movement corridors: Conservation bargains or poor investments? Conserv. Biol. 6: 493–505.Google Scholar
  157. Smith, F.D.M., May, R.M., Pellew, R., Johnson, T.H. & Walter, K.R. 1993. How much do we know about the current extinction rate? TREE 8: 375–378.Google Scholar
  158. Solbrig, O.T. 1991. Biodiversity. Scientific Issues and Collaborative Research Proposals. UNESCO, Paris.Google Scholar
  159. Solbrig, O.T. 1994. Biodiversität. Wissenschaftliche Fragen und Vorschläge für die internationale Forschung. Bonn: Deutsche UNESCO-Kommission (MAB).Google Scholar
  160. Solbrig, O.T., van Emden, H.M. & van Oordt, P.G.W.J. 1992. Biodiversity and Global Change. Paris, International Union of Biological Science (IUBS), Monograph No. 8.Google Scholar
  161. Stearns, S.C. et al. 1990. Biodiversity, pp. 46–74. In: Schweizerischer Wissenschaftsrat (ed), Forschungspolitische Früherkennung. Technologien zur Erhaltung der biologischen Vielfalt.Google Scholar
  162. Strasburger, E. 1991. Lehrbuch der Botanik. 33rd ed. (edited by P. Sitte, H. Ziegler, F. Ehrendorfer, A. Bresinsky). Gustav Fischer Verlag, Stuttgart.Google Scholar
  163. Tangney, R.S., Wilson, J.B. & Mark, A.F. 1990. Bryophyte island biogeography: a study of Lake Manapouri, New Zealand. Oikos 59: 21–26.Google Scholar
  164. Terborgh, J. 1974. Faunal equilibria and the design of wildlife preserves. In: Golley, F. & Medina, E. (eds), Tropical Ecological Systems: Trends in Terrestrial and Aquatic Research. Springer Verlag, New York.Google Scholar
  165. Thienemann, A. 1920. Die Grundlagen der Biocoenotik und Monards faunistische Prinzipien. Festschrift für Zschokke No. 4: 1–14.Google Scholar
  166. Thienemann, A. 1956. Leben und Umwelt. Vom Gesamthaushalt der Natur. Hamburg.Google Scholar
  167. Tischler, W. 1949. Grundzüge der terrestrischen Tierökologie. Vieweg & Sohn, Braunschweig.Google Scholar
  168. Trepl, L. 1988. Gibt es Ökosysteme? Landschaft & Stadt 20 (4): 176–185.Google Scholar
  169. Trepl, L. 1994. Geschichte der Ökologie vom 17. Jahrhundert bis zur Gegenwart. 2nd ed. Beltz Athenäum, Studienbücher der Geschichte.Google Scholar
  170. UNEP (United Nations Environmental Programme). 1993. Global Biodiversity. UNEP/GEMS Environment Library No. 11- Nairobi: UNEP.Google Scholar
  171. UNEP (United Nations Environmental Programme). 1995. Global Biodiversity Assessment. Cambridge Univ. Press, Cambridge.Google Scholar
  172. Van der Maarel, E. 1988. Species diversity in plant communities in relation to structure and dynamics, pp. 1–14. In: During, H.J. et al. (eds), Diversity and Pattern in Plant Communities.Google Scholar
  173. Van Leeuwen, C.G. 1966. A relation-theoretical approach to pattern and process in vegetation. Wentia 15: 25–46.Google Scholar
  174. Vestal, A.G. 1949. Minimum areas for different vegetations: their determination from species-area curves. Univ. Ill. Biol. Monogr. 20 (1).Google Scholar
  175. Vestal, A.G. & Heermans, M.F. 1945. Size requirements for reference areas in mixed forests. Ecology 26: 122–134.Google Scholar
  176. Vida, G. 1994. Global issues of genetic diversity, pp. 9–19. In: Loeschke, V. Tomiuk, J. & Jain, S.K. (eds), Conservation Genetics. Birkhäuser, Basel.Google Scholar
  177. Vogel, S. 1988. Die Ölblumensymbiosen — Parallelismus und andere Aspekte ihrer Entwicklung in Raum und Zeit. Z. zool. Syst. Evol.-Forsch. 26: 341–362.Google Scholar
  178. Walker, B.H. 1992. Biodiversity and ecological redundancy. Conserv. Biol. 6: 8–23.Google Scholar
  179. Walter, H. & Breckle, S.-W. 1984. Ökologie der Erde. Bd 2: Spezielle Ökologie der Tropischen und subtropischen Zonen. Fischer Verlag, Stuttgart.Google Scholar
  180. Walter, H. & Straka, H. 1970. Arealkunde. Floristisch-historische Geobotanik. Ulmer Verlag, Stuttgart.Google Scholar
  181. Westrich, P. 1989. Die Wildbienen Baden-Württembergs. Allgemeiner Teil: Lebensräume, Verhalten, Ökologie, Schutz. Ulmer Verlag, Stuttgart.Google Scholar
  182. Williams, C.B. 1953. The relative abundance of different species in a wild animal population. J. Anim. Ecol. 22: 14–31.Google Scholar
  183. Wilson, E.O. 1961. The nature of the taxon cycle in the Melanesian ant fauna. Amer. Nat. 95: 169–193.Google Scholar
  184. Wilson, E.O. 1988. Biodiversity. National Acad. Press, Washington.Google Scholar
  185. Wilson, E.O. 1989. Die Bedrohung des Artenreichtums. Spektr. Wissensch. 11: 88–95.Google Scholar
  186. Wilson, E.O. 1992. The Diversity of Life. Harvard Univ. Press, Cambridge.Google Scholar
  187. Wissenschaftlicher Beirat der Bundesregierung “Globale Umweltveränderungen”. 1993. Grundstruktur globaler Mensch-Umwelt-Beziehungen; Jahresgutachten 1993. Economica Verlag, Bonn.Google Scholar
  188. Whittaker, R.H. 1972. Evolution and measurement of species diversity. Taxon 21 (2/3): 213–251.Google Scholar
  189. Whittaker, R.H. 1975. Communities and Ecosystems. 2nd ed. New York, London.Google Scholar
  190. Whittaker, R.H. 1977. Evolution of species diversity in land communities. Evol. Biol. 10: 1–67.Google Scholar
  191. World Resources Institute (WRI) 1992. Global Biodiversity Strategy. Washington D.C. USA: WRI.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Anselm Kratochwil
    • 1
  1. 1.Fachgebiet Ökologie, Fachbereich Biologie/ChemieUniversität OsnabrückOsnabrückGermany

Personalised recommendations