Long-term and diurnal carpospore discharge patterns in the Ceramiaceae Rhodomelaceae and Delesseriaceae (Rhodophyta)

  • J. A. West
  • D. L. McBride
Part of the Developments in Hydrobiology book series (DIHY, volume 137)

Abstract

In laboratory culture, controlled fertilization resulted in mature carposporophytes of the Ceramiales indicated below. Carpospore discharge was observed daily. In the Ceramiaceae Spyridia filamentosa cystocarp-pairs released spores twice in succession (range: 32–537 total spores/carposporophyte). Discharge by all cystocarp-pairs occurred during the dark period of the daily light:dark cycle (12:12 LD) and was completed in 12 d. In reverse cycle (12:12 and 16:8 DL) spore release reversed in 3d. In the Rhodomelaceae Bostrychia moritziana, Pterosiphonia pennata and Murrayella periclados discharged spores from isolated cystocarps over periods up 58 d (ranges: 318–4112, 1051–2271 and 451–3162 total spores/carposporophyte respectively) without any diurnal or long-term rhythmicity. In the Delesseriaceae cystocarps of Caloglossa leprieurii and Caloglossa ogasawaraensis released spores for up to 31 d (ranges: 271–3050 and 565–1286 total spores/carposporophyte respectively). Discharge peaks occurred at 5–7 d intervals with viable cystocarps and spore numbers gradually declining. Thus, in the plants studied, there are at least three patterns of carpospore release from individual mature carposporophytes: a relatively short-term dual release pattern, a long-term non-rhythmic release pattern and a long-term rhythmic release pattern. Results also indicated that excised cystocarps without associated vegetative branches showed a much reduced spore production.

Key words

diurnal long-term carpospore-discharge Ceramiaceae Delesseriaceae Rhodomelaceae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aponte, N. & D. Ballantine, 1987. The life history and development of Murray ella periclados (C. Agardh) Schmitz (Rhodophyta, Rhodomelaceae) in culture. Cryptogamie Algol. 8: 29–39.Google Scholar
  2. Bhattacharya, D., 1985. The demography of fronds of Chondrus crispus Stackhouse. J. exp. mar. Biol. Ecol. 91: 217–231.CrossRefGoogle Scholar
  3. Boney, A. D., 1978. The liberation and dispersal of carpospores of the red alga Rhodymenia pertusa (Postels et Rupr). J. Ag. J. exp. mar. Biol. Ecol. 32: 1–6.CrossRefGoogle Scholar
  4. Feldmann, J. & G. Feldmann, 1943.Le développement des spores et le mode de croissance de la fronde chez le Spyridia filamentosa (Wulf). Harv. Bull. Soc. Histor. nat. Afr. Nord. 34: 213–221.Google Scholar
  5. Guzman-del Proo, S. A., S. de la Campa-de Guzman & J. Pineda-Barrera, 1971. Shedding rhythm and germination of spores in Gelidium robustum. Proc. int. Seaweed Symp. 7: 221–228.Google Scholar
  6. Hawkes, M., 1990. Reproductive strategies. In Cole, K. M. & R. G. Sheath (eds), Biology of Red Algae. Cambridge University Press, Cambridge: 455–476.Google Scholar
  7. Hommersand, M. H., 1963. The morphology and classification of some Ceramiaceae and Rhodomelaceae. Univ. Calif. Publ. Bot. 35:165–366.Google Scholar
  8. Hommersand, M. H. & S. Fredericq, 1990. Sexual reproduction and cystocarp development. In Cole, K. M. & R. G. Sheath (eds), Biology of Red Algae. Cambridge University Press, Cambridge: 305–347.Google Scholar
  9. Kain, J. M. & T. A. Norton, 1990. Marine ecology. In Cole, K. M. & R. G. Sheath (eds), Biology of Red Algae. Cambridge University Press, Cambridge: 377–422.Google Scholar
  10. Kamiya, M. & J. Tanaka, 1993. Reproductive structure of Calo-glossa ogasawaraensis Okamura (Ceramiales, Rhodophyceae) in nature and culture. Jap. J. Phycol. 41: 113–121.Google Scholar
  11. Kamiya, M., J. Tanaka & Y. Hara, 1995. A morphological study and hybridization analysis of Caloglossa leprieurii (Ceramiales, Rhodophyta) from Japan, Singapore and Australia. Phycol. Res. 43: 81–91.CrossRefGoogle Scholar
  12. Kamiya, M., J. Tanaka & Y. Hara, 1997. Comparative morphology, crossability, and taxonomy within the Caloglossa continua (De-lesseriaceae, Rhodophyta) complex from the Western Pacific. J. Phycol. 33: 97–105.CrossRefGoogle Scholar
  13. Kamiya, M., J. A. West, R. J. King, G. Zuccarello, J. Tanaka & Y. Hara, 1998. Evolutionary differentiation in the red algae Caloglossa leprieurii and C. apomeiotica. J. Phycol. 34: 361–370.CrossRefGoogle Scholar
  14. Karsten, U., J. A. West & E. K. Ganesan, 1993. Comparative physiological ecology of Bostrychia moritziana (Ceramiales, Rhodophyta) from freshwater and marine habitats. Phycologia 32: 401–409.CrossRefGoogle Scholar
  15. King, R. J. & C. F. Puttock, 1989. Morphology and taxonomy of Bostrychia and Stictosiphonia (Rhodomelaceae/Rhodophyta). Aust. syst. Bot. 2: 1–73.CrossRefGoogle Scholar
  16. King, R. J. & C. F. Puttock, 1994. Morphology and taxonomy of Caloglossa (Delesseriaceae, Rhodophyta). Aust. syst. Bot. 7: 89–124.CrossRefGoogle Scholar
  17. Kurogi, M., K. Akiyama & S. Sato, 1962. Influence of light on the growth and maturation of Conchocelis-thallus of Porphyra. (I) Effect of photoperiod on the formation of monosporangia and liberation of monospores. Bull. Tohoku reg. Fish. Res. Lab. 20: 121–126.Google Scholar
  18. Masuda, M., 1973. The life history of Pterosiphonia pennata (Roth) Falkenberg (Rhodophyceae, Ceramiales) in culture. J. Jap. Bot. 48: 122–127.Google Scholar
  19. Ngan, Y. & I. Price, 1983. Periodicity of spore discharge in tropical Florideophyceae (Rhodophyta). Br. phycol. J. 18: 83–95.CrossRefGoogle Scholar
  20. O’Kelly, C. J. & B. J. Baca, 1984. The time course of carpogo-nial branch and carposporophyte development in Callithamnion cordatum. Phycologia 23: 407–417.CrossRefGoogle Scholar
  21. Pickett-Heaps, J. & J. West, 1998. Time-lapse video observations on sexual plasmogamy in the red alga Bostrychia. Europ. J. Phycol. 33: 43–56.CrossRefGoogle Scholar
  22. Rama Rao, K. & P. C. Thomas, 1974. Shedding of carpospores in Gracilaria edulis (Gmel). Silva. Phykos 13: 54–59.Google Scholar
  23. Santelices, B., 1990. Patterns of reproduction, dispersal and recruitment in seaweeds. Oceanogr. mar. Biol. ann. Rev. 28: 177–276.Google Scholar
  24. Searles, R., 1980. The strategy of the red algal life history. Am. Nat. 115:113–120.CrossRefGoogle Scholar
  25. Sagromsky, H., 1961. Durch Licht-Dunkel-Wechsel induzierter Rhythmus in der Entleerung der Tetrasporangien von Nitophyl-lum punctatum. Pubbl. Staz. Zool. Napoli 32: 29–40.Google Scholar
  26. Umamaheswara Rao, M., 1974. Observations on fruiting cycle, spore output and germination of tetraspores of Gelidiella acerosa in the Gulf of Mannar. Bot. mar. 17: 204–207.Google Scholar
  27. West, J. & H. Calumpong, 1988. Mixed-phase reproduction of Bostrychia (Ceramiales, Rhodophyta) in culture. I. B. tenella (Lamouroux) J. Agardh. Jap. J. Phycol. 36: 292–310.Google Scholar
  28. West, J. A. & H. Calumpong, 1989. Reproductive biology of Spyridia filamentosa (Wulfen) Harvey (Rhodophyta) in culture. Bot. mar. 32: 379–387.CrossRefGoogle Scholar
  29. West, J. A. & E. Crump, 1975. Carpospore discharge periodicity in excised cystocarpic papillae of Gigartina-Petrocelis. (Rhodophyta). J. Phycol. 11 (supplement): 17.Google Scholar
  30. West, J. A., G. Zuccarello, U. Karsten & H. P. Calumpong, 1993. Biology of Bostrychia, Stictosiphonia and Caloglossa (Rhodophyta, Ceramiales). In Calumpong, H. & E. Menez (eds), Proceedings of the Second RP-USA Phycology Symposium/Workshop. 6–19 January 1992. Cebu & Dumaguete. PCAMRD, Los Banos: 145–162.Google Scholar
  31. West, J. A., G. C. Zuccarello, F. Pedroche & U. Karsten, 1994. Calo glossa apomeiotica sp. nov. (Ceramiales, Rhodophyta) from Pacific Mexico. Bot. mar. 37: 381–390.CrossRefGoogle Scholar
  32. Zuccarello, G. C. & J. A. West, 1997. Hybridization studies in Bostrychia: 2. Correlation of crossing data and plastid DNA sequence data within B. radicans and B. moritziana (Rhodophyta, Ceramiales). Phycologia 36: 293–304.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • J. A. West
    • 1
  • D. L. McBride
    • 1
  1. 1.School of BotanyUniversity of MelbourneParkvilleAustralia

Personalised recommendations