Advertisement

Seed Proteins pp 517-541 | Cite as

Structural Relationships of 7S and 11S Globulins

  • Michael C. Lawrence

Abstract

It is now well recognized that an understanding of protein structure is fundamental to a proper understanding of protein function, and from this perspective the above quotation from Osborne’s text “The Vegetable Proteins” remains a succinct description of our structural understanding of storage proteins even today. Indeed, it should be recalled that legume storage proteins were first isolated in the latter half of the last century, and that some of these proteins could be obtained in crystalline form. Of course that was prior to the discovery of X-rays and high-resolution structural determination of these proteins could not be contemplated. Now, a full century later, detailed structural information is available for only two globulins, namely the closely-related 7S proteins from P. vulgaris (phaseolin, Lawrence et al., 1990, 1994) and C. ensiformis (canavalin. Ko et al. 1993a, b). There remains no high-resolution detail for any member of the 11S family, despite preliminary crystallographic analysis of the respective 11S proteins of sesame (Hasegawa et al., 1978), pumpkin (Hara et al., 1976; Colman et al., 1980), tobacco (Drenth and Wiebenga, 1955), Brazil nut (Drenth and Wiebenga, 1955; Kamiya et al., 1983), hemp (Drenth and Wiebenga. 1955; Patel et al., 1994) and coconut (Carr et al., 1990). The crystals employed in these studies vary considerably in quality and none has yet led to any information at the atomic level. As a consequence, buoyed by the ever-increasing amount of primary sequence data, renewed effort has been made to investigate structural relationships between the 7S and US proteins (Argos et al., 1985; Wright, 1988; Gibbs et al. 1989; Lawrence et al., 1994; Bäumlein et al., 1995; Shutov et al., 1995).

Keywords

Storage Protein Versus Versus Versus Seed Storage Protein Plant Molecular Biology Nucleic Acid Research 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argos, P., Narayana, S.V.L. & Nielsen, N.C. (1985) Structural similarity between legumin and vicilin storage proteins from legumes. EMBO Journal 4, 1111–1117.PubMedGoogle Scholar
  2. Baker, S.S., Rugh, C.L., Whitmore, F.W. & Kamalay, J.C. (1996) Genes encoding 11S-globulin-like proteins are expressed in the megagametophyte soon after fertilization in eastern white pine (Pinus strobus L.). Intemational. Journal of Plant Science 157, 453–461.CrossRefGoogle Scholar
  3. Barba de la Rosa, A.P., Herrera-Estrella, A., Utsumi, S. & Paredes-Lopez, O. (1996) Molecular characterization, cloning and structural analysis of a cDNA encoding an amaranth globulin. Journal of Plant Physiology 149, 527–532.CrossRefGoogle Scholar
  4. Barton, G.J. (1993) ALSCRIPT a tool to format multiple sequence alignments. Protein Engineering 6, 37–40.PubMedCrossRefGoogle Scholar
  5. Bassüner, R., Hai, N.V., Jung, R., Saalbach, G. & Mtintz, K. (1987) The primary structure of the predominating vicilin storage protein subunit from field bean seeds (Vicia faba L. var. minor cv. Fribo). Nucleic Acids Research 15, 9609.PubMedCrossRefGoogle Scholar
  6. Bäumlein, H., Wobus, U., Pustell, J. & Kafatoc, F.C. (1986) The legumin gene family: structure of a B type gene of Vicia faba and a possible legumin gene specific regulatory element. Nucleic Acids Research 14, 2707–2720.PubMedCrossRefGoogle Scholar
  7. Bäumlein, H., Braun, H., Kakhovskaya, I.A. & Shutov, A.D. (1995) Seed storage proteins of spermatophytes share a common ancestor with dessication proteins of fungi. Journal of Molecular Evolution 41, 1070–1075.PubMedCrossRefGoogle Scholar
  8. Belanger, F.C. & Kriz, A.L. (1991) Molecular basis for allellic polymorphism of the maize Globulin-1 gene. Genetics 129, 863–872.PubMedGoogle Scholar
  9. Boulter, D. & Croy, R.R.D. (1997) The structure and biosynthesis of the legume seed storage proteins: a biological solution to the storage of nitrogen in seeds. Advances in Botanical Research 27, 2–84.CrossRefGoogle Scholar
  10. Braun, H., Czihal, A., Shutov, A.D. & Bäumlein, H. (1996) A vicilin-like seed protein of cycads: similarity to sucrose-binding proteins. Plant Molecular Biology 31, 35–44.PubMedCrossRefGoogle Scholar
  11. Carr, H.J., Plumb, G.W., Parker, M.L. & Lambert, N. (1990) Characterisation and crystallisation of an 11S seed storage globulin from coconut (Cocus nucifera). Food Chemistry 38, 11–20.CrossRefGoogle Scholar
  12. Chlan, C.A., Pyle, J.B., Legocki, A.B. & Dure, L. III. (1986) Developmental biochemistry of cottonseed embryogenesis and germination. XVIII. cDNA and amino acid sequences of members of the storage protein families. Plant Molecular Biology 7, 475–489.CrossRefGoogle Scholar
  13. Cho, T.J & Nielsen, N.C. (1989) The glycinin Gy3 gene from soybean. Nucleic Acids Research 17, 4388.PubMedCrossRefGoogle Scholar
  14. Colman, P.M., Suzuki, E. & Van Donkelaar, A. (1980) The structure of cucurbitin: subunit symmetry and organization in situ. European Journal of Biochemistry 103, 585–588.PubMedCrossRefGoogle Scholar
  15. Danielsson, C. E. (1949) Seed globulins of the Gramineae and Leguminoseae. Biochemistry Journal 44, 387–400.Google Scholar
  16. De Rijk, P. & De Wachter, R. (1993) DCSE, an interactive tool for sequence alignment and secondary structure research. Computer Appl. Biosci. 9, 735–740.Google Scholar
  17. Devereux, J. Haerbli, P. & Smithies, O. (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12, 387–395.PubMedCrossRefGoogle Scholar
  18. Dickinson, C.G., Hussein, E.H.A. & Nielsen, N.C. (1989) Role of post-translational cleavage in glycinin assembly. Plant Cell 1, 459–469.PubMedGoogle Scholar
  19. Doyle, J.J., Schuler, M.A., Godette, W.D., Zenger, V., Beachy, R.N. & Slightom, J.L. (1986) The glycosylated seed storage proteins of Glycine max and Phaseolus vulgaris. Journal of Biological Chemistry 261, 9228–9238.PubMedGoogle Scholar
  20. Drenth, J. & Wiebenga, E.H. (1955) Excelsin, edestin and tobacco seed globulin crystals. Recueil 74, 813–831.CrossRefGoogle Scholar
  21. Fischer, H., Haake, V., Horstmann, C. & Jensen, U. (1995) Characterization and evolutionary relationships of Magnolia legumin encoding cDNAs representing two divergent gene families. European Journal of Biochemistry 229, 645–650.PubMedCrossRefGoogle Scholar
  22. Fischer, H., Chen, L. & Wallisch, S. (1996) The evolution of angiosperm seed proteins: a methionine-rich legumin subfamily present in lower angiosperm clades. Journal of Molecular Evolution 43, 399–404.PubMedCrossRefGoogle Scholar
  23. Fukazawa, C., Momma, T., Hirano, H., Harada, K. & Udaka, K. (1985) Glycinin A3B4 mRNA: cloning and sequencing of a double stranded cDNA complementary to a soybean storage protein. Journal of Biological Chemistry 260, 6234–6239.PubMedGoogle Scholar
  24. Galau, G.A., Wang, H. Y.-C. & Hughes, D.W. (1991) Sequence of the Gossypium hirsutum D-genome alloallele of legumin and its mRNA. Plant Physiology 97, 1268–1270.PubMedCrossRefGoogle Scholar
  25. Garcia-Mas, J., Messeguer, R., Arus, P. & Puigdomenech, P. (1995) Molecular characterization of cDNAs corresponding to genes expressed during almond (Prunus amygdalus Batsch) seed development. Plant Molecular Biology 11, 205–210.CrossRefGoogle Scholar
  26. Gatehouse, J.A., Bown, D., Gilroy, J., Levasseur, M., Castleton, J. & Ellis, T.H. (1988) Two genes encoding ‘minor’ legumin polypeptides in pea (Pisum sativum L.). Characterization and complete sequence of the LegJ gene. Biochemistry Journal 250, 15–24.Google Scholar
  27. Gibbs, P.E.M., Strongin, K.B. & McPherson, A. (1989) Evolution of legume storage proteins: a domain common to legumins and vicilins is duplicated in vicilins. Molecular Biology and Evolution 6, 614–623.PubMedGoogle Scholar
  28. Gidamis, A.B., Mikami, B., Katsube, T., Utsumi, S. & Kito, M. (1994) Crystallization and preliminary X-ray analysis of soybean proglycinins modified by protein engineering. Bioscience, Biotechnology & Biochemistry 58, 703–706.CrossRefGoogle Scholar
  29. Häger, K.-P., Braun, H., Czihal, A., Müller, B. & Bäumlein, H. (1995) Evolution of seed storage protein genes: legumin genes of Ginkgo biloba. Journal of Molecular Evolution 41, 457–466.PubMedCrossRefGoogle Scholar
  30. Häger, K.-P. & Wind, C. (1997) Two ways of legumin precursor processing in conifers. Characterization and evolutionary relationships of Metasequoia cDNAs representing two legumin gene subfamilies. European Journal of Biochemistry 246, 763–771.PubMedCrossRefGoogle Scholar
  31. Hara, J., Wada, K., Wakabayashi, S. & Matsubara, H. (1976) Pumpkin (Cucurbita sp.) seed globulin 1. Purification, characterisation and subunit structure. Plant and Cell Physiology 17, 799–814.Google Scholar
  32. Harada, J.J., Barker, S.T. & Goldberg, R.B. (1989) Soybean ß-conglycinm genes are clustered in several DNA regions and are regulated by transcriptional and post-transcriptional processes. Plant Cell 1, 415–425.PubMedGoogle Scholar
  33. Hasegawa, K. Murata, M. & Fujino, S. (1978) Characterisation of subunits and temperature dependent dissociation of 13S globulin of sesame seed. Agricultural & Biological Chemistry 42, 2291–2297.CrossRefGoogle Scholar
  34. Hayashi, M., Mori, H., Nishimura, M., Akazawa, T. & Hara-Nishimura, I. (1988) Nucleotide sequence of cloned cDNA for pumpkin 11-S globulin β-Usubunit. European Journal of Biochemistry 172, 627–632.PubMedCrossRefGoogle Scholar
  35. Heck, G.R., Chamberlain, A.K. & Ho, T.-H. D. (1993) Barley embryo globulin 1 gene, Beg1: Characterization of cDNA, chromosome mapping and regulation of expression. Molecular & General Genetics 239, 209–218.Google Scholar
  36. Heim, U., Baumlein, H. & Wobus, U. (1994) The legumin gene family: a reconstructed Vicia faba legumin gene encoding a high-molecular-weight subunit is related to type B genes. Plant Molecular Biology 25, 131–135.PubMedCrossRefGoogle Scholar
  37. Higgins, T.J.V., Newbigin, E.J., Spencer, D., Llewellyn, D.J. & Craig, S. (1988) The sequence of a pea vicilin gene and its expression in transgenic tobacco. Plant Molecular Biology 11, 683–695.CrossRefGoogle Scholar
  38. Kamiya, N., Sakabe, K., Sakabe, N., Sasaki, K., Sakakibara, M., & Noguchi, H. (1983) Structural properties of brazil nut 11S globulin, excelsin. Agricultural & Biological Chemistry 47, 2091–2098.CrossRefGoogle Scholar
  39. Ko, T.-P., Ng, J.D. & McPherson, A. (1993a) The three-dimensional structure of canavalin from jack bean (Canavalia ensifomiis). Plant Physiology 101, 729–744.PubMedCrossRefGoogle Scholar
  40. Ko, T.-P., Ng, J.D., Day, J., Greenwood, A. & McPherson, A. (1993b) Determination of three crystal structures of canavalin bv molecular replacement. Acta Crystallographica Section D 49, 478–489.CrossRefGoogle Scholar
  41. Lawrence, M.C., Suzuki, E., Varghese, J.N., Davis, P.C., Van Donkclaar, A., Tulloch, P.A. & Colman, P.M. (1990) The three-dimensional structure of the seed storage protein phaseolin at 3 Å resolution. EMBO Journal 9, 9–15.PubMedGoogle Scholar
  42. Lawrence, M.C., Izard, T., Beuchat, M., Blagrove, R.J. & Colman, P.M. (1994) Structure of phaseolin at 2.2 Å resolution: implications for a common vicilin/legumin structure and the genetic engineering of seed storage proteins. Journal of Molecular Biology 238, 748–776.PubMedCrossRefGoogle Scholar
  43. Leal, I. & Misra, S. (1993) Molecular cloning and characterization of a legumin-like storage protein cDNA of Douglas fir seeds. Plant Molecular Biology 21, 707–715.CrossRefGoogle Scholar
  44. McHenry, L. & Fritz, P.J. (1992) Comparison of the structure and nucleotide sequences of vicilin genes of cocoa and cotton raise questions about vicilin evolution. Plant Molecular Biology 18, 1173–1176.PubMedCrossRefGoogle Scholar
  45. Newbigin, K.J., De Lumen, B.O., Chandler, P.M., Gould, A., Blagrove, R.J., March, J.F., Kortt, A.A. & Higgins, T.J. (1990) Pea convicilin: structure and primary sequence of the protein and expression of a gene in the seeds of transgenic tobacco. Planta 180, 461–470.CrossRefGoogle Scholar
  46. Newton, C.H., Flinn, H.S. & Sutton, B.C.S. (1992) Vicilin-like seed storage proteins in the gymnosperm interior spruce (Picea glauca / engelmanii). Plant Molecular Biology 20, 315–322.PubMedCrossRefGoogle Scholar
  47. Ng, J.D., Ko, T.-P. & McPherson, A. (1993) Cloning, expression, and crystallization of jack bean (Canavalia ensiformis) canavalin. Plant Physiology 101, 713–728.PubMedCrossRefGoogle Scholar
  48. Nicholls, A.J., Sharp., K.A., & Honig, B. (1991) Protein folding and association: insights from interfacial and thermodynamic properties of hydrocarbons. Proteins: Structure Function & Genetics 11, 281–296.CrossRefGoogle Scholar
  49. Nielsen, S.S., Deshpande, S.S., Hermodson, M.A. & Scott, M.P. (1988) Comparative digestibility of legume storage proteins. Journal of Agricultural & Food Chemistry 36, 896–902.CrossRefGoogle Scholar
  50. Osborne, T.B. (1909) The Vegetable Proteins, Longmans, Green & Co., New York.Google Scholar
  51. Osborne, T.B. (1924) The Vegetable Proteins, 2nd Edition, Longmans, Green & Co., New York.Google Scholar
  52. Patel, S., Cudney, R. & McPherson, A. (1994) Crystallographic characterization and molecular symmetry of edestin, a legumin from hemp. Journal of Molecular Biology 235, 361–363.PubMedCrossRefGoogle Scholar
  53. Reichelt, R., Schwenke, K.D., König, T., Pähtz, W. & Wangermann, G. (1980) Electron microscopic studies for estimation of the quaternary structure of the 11S globulin (helianthinin) from sunflower seed (Helianthus annuus L.). Biochimie und Physiologie der Pflanzen. 175, 653–663.Google Scholar
  54. Rerie, W.G., Whitecross, M.I. & Higgins, T.J. (1990) Nucleotide sequence from an A-type legumin gene from pea. Nucleic Acids Research 18, 655.PubMedCrossRefGoogle Scholar
  55. Richardson, J.S. (1981) The anatomy and taxonomy of protein structure. Advances in Protein Chemistry 34, 167–339.PubMedCrossRefGoogle Scholar
  56. Rossmann, M.G., Abad-Zapatero, C., Murthy, M.R.N., Liljas, L., Jones, T.A. & Strandberg, B. (1983) Structural comparisons of some small spherical plant viruses. Journal of Molecular Biology 165, 711–736.PubMedCrossRefGoogle Scholar
  57. Schepman, A.M.H., Wichertjes, T. & Van Bruggen, E.F.J. (1972) Visibility of subunits in crystals of oligomeric proteins. Electron microscopy and optical diffraction of edestin and excelsm. Biochimica et Biophysica Acta 271, 279–285.PubMedCrossRefGoogle Scholar
  58. Schlesier, B., Bassüner, R., Nong, V.H. & Müntz, K. (1990) The cDNA derived primary structure of two distinct legumin A subunit precursors from field bean (V. faba L.). Nucleic Acids Research 18, 7146.PubMedCrossRefGoogle Scholar
  59. Sebastiani, F.L., Farrell, L.B., Schuler, M.A. & Beachy, R.N. (1990) Complete sequence of a cDNA of α-subunit of soybean β-conglycinin. Plant Molecular Biology 15, 197–201.PubMedCrossRefGoogle Scholar
  60. Shewry, P.R. (1995) Plant storage proteins. Biological Reviews 70, 375–426.PubMedCrossRefGoogle Scholar
  61. Shutov, A.D., Kakhovskaya, I.A., Braun, H., Bäumlein, H. & Müntz, K. (1995) Legumin-like and vicilin-like seed storage proteins: evidence for a common single-domain ancestral gene. Journal of Molecular Evolution 41, 1057–1069.PubMedCrossRefGoogle Scholar
  62. Simon, A.E., Tenbarge, K.M., Scofield, S.R., Finkelstein, R.R. & Crouch, M.L. (1985) Nucleotide sequence of a cDNA clone of Brassica napus 12S storage protein shows homology with legumin from Pisum sativum. Plant Molecular Biology 5, 191–201.CrossRefGoogle Scholar
  63. Sims, T.L. & Goldberg, R.B. (1989) The glycinin Gyl gene from soybean. Nucleic Acids Research 17, 4386.PubMedCrossRefGoogle Scholar
  64. Slightom, J.L., Drong, R.F., Klassy, R.C. & Hoffman, L.M. (1985) Nucleotide sequences from phaseolin cDNA clones: the major storage proteins from Phaseolus vulgaris are encoded by two unique gene families. Nucleic Acids Research 13, 6483–6498.PubMedCrossRefGoogle Scholar
  65. Tanchak, M.A., Giband, M., Potier, B., Schernthaner, J.P, Dukiandjiev, S. & Altosaar, I. (1995) Genomic clones encoding 11S globulins in oats (Avena saliva L.). Genome 38, 627–634.PubMedCrossRefGoogle Scholar
  66. Thanh, V.H., Turner, N.E. & Nielsen, N.C. (1989) The glycinin Gy2 gene from soybean. Nucleic Acids Research 17, 4387.PubMedCrossRefGoogle Scholar
  67. Utsumi, S., Gidamis, A.B., Mikami, B. & Kito, M. (1993) Crystallization and preliminary X-ray crystallographic analysis of soybean proglycinin expressed in E. coli. Journal of Molecular Biology 233, 177–178.PubMedCrossRefGoogle Scholar
  68. Utsumi, S., Matsumura, Y. & Mori, T. (1997) Structure-function relations of soy proteins, in Food proteins and their applications (eds S. Damodaran & A. Paraf), Dekker, New York, pp. 257–291.Google Scholar
  69. Utsumi, S., Gidamis, A.B., Takenaka, Y., Maruyama, N., Adachi, M. & Mikami, B. (1996) Crystallization and X-ray analysis of normal and modified recombinant soybean proglycinins. Three-dimensional structure of normal proglvcmin at 6 Å resolution, in Macromolecular interactions in food technology (eds N. Parris. A. Kato, L.K. Creamer and J. Pearce), American Chemical Society, Washington. DC., pp. 257–270.CrossRefGoogle Scholar
  70. Von der Haar, R.A., Allen, R.D., Cohen, H.A., Nessler, C.L. & Thomas T.L. (1988) Organization of the sunflower 11S storage protein family, Gene 74, 433–443.CrossRefGoogle Scholar
  71. Wind, C. & Häger, K.-P. (1996) Legumin encoding sequences from the redwood family (Taxodiaceae) reveal precursors lacking the conserved Asn-Gly processing site. FEBS Letters 383, 46–50.PubMedCrossRefGoogle Scholar
  72. Wright, D.J. (1988) The seed globulins—part II. in Developments in Food Proteins—6 (ed. B.L.F. Hudson), Elsevier, London, pp. 119–178.Google Scholar
  73. Xue, Z.T., Xu, M.L. Shen, W., Zhuang, N.L., Hu, W.M. & Shen, S.C. (1992) Characterization of a Gy4 glycinin gene from soybean Glycine max cv. forrest. Plant Molecular Biology 18, 897–908.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Michael C. Lawrence
    • 1
  1. 1.Biomolecular Research InstituteParkvilleAustralia

Personalised recommendations