Computational Costs of Future QCD Simulations in the Deep Chiral Regime

  • Th. Lippert
  • K. Schilling
Part of the NATO Science Series book series (ASIC, volume 553)


Realistic QCD simulations with dynamical fermions require to operate close to the chiral and continuum limits. To estimate the computer resources required for such simulations we make extrapolations based on performance results of current large scale experiments (using variants of Wilson fermions), performed at moderate.\(\frac{{{m_{ps}}}}{{{m_v}}}.\)ratios and lattice spacings.

In this contributions we use performance data from the SESAM/TxL hybrid Monte Carlo simulations at lattice spacing a ≈0.08 fm to prognosticate the computer time needed for producing full QCD vacuum configurations with\({N_f} = 2\) Wilson fermions, beyond the p decay threshold. Particular attention is paid to autocorrelation effects and scaling of iterative solvers within HMC.


Lattice Spacing Iterative Solver Wilson Fermion Chiral Extrapolation Dynamical Fermion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Jegerlehner, R. D. Kenway, G. Martinelli, C. Michael, O. Pne, B. Petersson, R. Petronzio, C. T. Sachrajda, and K. Schilling. Requirements for high performance computing for lattice QCD: Report of the ECFA working panel. Report, NIC, FZ-Jülich, 1999 http://www.h Scholar
  2. 2.
    N. Eicker, P. Lacock, K. Schilling, A. Spitz, U. Glässner, S. Güsken, H. Hoeber, Th. Lippert, Th. Struckmann, P. Ueberholz, and J. Viehoff. Light and strange hadron spectroscopy with dynamical Wilson fermions. Phys. Rev., D59:014509, 1999.Google Scholar
  3. 3.
    R. C. Brower, T. Ivanenko, A. R. Levi, and K. N. Orginos. Chronological inversion method for the Dirac matrix in hybrid Monte Carlo. Nucl. Phys., B484:353–374, 1997.ADSCrossRefGoogle Scholar
  4. 4.
    A. Frommer, V. Hannemann, B. Nöckel, Th. Lippert, and K. Schilling. Accelerating Wilson fermion matrix inversions by means of the stabilized biconjugate gradient algorithm. Int. J. Mod. Phys., C5:1073, 1994.ADSGoogle Scholar
  5. 5.
    S. Fischer, A. Frommer, U. Glässner, Th. Lippert, G. Ritzenhöfer, and K. Schilling. A parallel SSOR preconditioner for lattice QCD. Comp. Phys. Commun., 98:20–34,1996.ADSCrossRefGoogle Scholar
  6. 6.
    W. Bietenholz, N. Eicker, A. Frommer, Th. Lippert, B. Medeke, K. Schilling, and G. Weuffen. Preconditioning of improved and `perfect’ fermion actions. Comput. Phys. Commun., 119:1, 1999.ADSzbMATHCrossRefGoogle Scholar
  7. 7.
    B. Bunk, 1999. Private communication.Google Scholar
  8. 8.
    I. Barbour, E. Laermann, Th. Lippert, and K. Schilling. Towards the chiral limit with dynamical blocked Wilson fermions. Phys. Rev.,D46:3618, 1992.ADSGoogle Scholar
  9. 9.
    F. Butler, H. Chen, J. Sexton, A. Vaccarino, and D. Weingarten. Hadron masses from the valence approximation to lattice QCD. Nucl. Phys.,B430:179–228, 1994.ADSCrossRefGoogle Scholar
  10. 10.
    Th. Lippert, I. Montvay, K. Schilling, and W. Schroers. Going realistic and light (GRAL), to appear.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Th. Lippert
    • 1
  • K. Schilling
    • 2
    • 3
  1. 1.Department of PhysicsUniversity of WuppertalWuppertalGermany
  2. 2.Von Neumann Institute of ComputingResearch Center JülichJülich
  3. 3.DESYHamburgGermany

Personalised recommendations