Advertisement

Bloch-Kato Conjecture and Motivic Cohomology with Finite Coefficients

  • Andrei Suslin
  • Vladimir Voevodsky
Chapter
Part of the NATO Science Series book series (ASIC, volume 548)

Abstract

In this paper we show that the Beilinson-Lichtenbaum Conjecture which describes motivic cohomology of (smooth) varieties with finite coefficients is equivalent to the Bloch-Kato Conjecture, relating Milnor K-theory to Galois cohomology. The latter conjecture is known to be true in weight 2 for all primes [M-S] and in all weights for the prime 2 [V 3].

Keywords

Spectral Sequence Finite Type Closed Subscheme Distinguished Triangle Open Subscheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B-T]
    H. Bass and J. Tate,Milnor Ring of a Global Field,Lecture Notes in Math. 342 (1973), 349–446.MathSciNetGoogle Scholar
  2. [B]
    S. Bloch,Algebraic Cycles and Higher K-Theory,Adv. in Math. 61 (1986), 267–304.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [B 1]
    S. Bloch, The Moving Lemma for Higher Chow Groups,Journal of Algebraic Geometry 3 (1994), 537–568.MathSciNetzbMATHGoogle Scholar
  4. [B-O]
    S. Bloch and A. Ogus, Gersten’s Conjecture and the Homology of Schemes, Ann. Sci. Ecole Norm. Super. (4) 7 (1975), 181–201.MathSciNetGoogle Scholar
  5. [D]
    A. Dold, Lectures on Algebraic Topology, Springer-Verlag, 1972.Google Scholar
  6. [F-V]
    E. Friedlander and V. Voevodsky, Bivariant Cycle Cohomology, Cycles, Transfers and Motivic Homology Theories (V. Voevodsky, A. Suslin and E. Friedlander, eds.), Annals of Math. Studies, 1999.Google Scholar
  7. [G]
    O. Gabber, Affine Analog of the Proper Base Change Theorem, Israel J. Math. 87 (1994), 325–335.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [EGA-4]
    A. Grothendieck, Étude Local des Schemas et des Morphisms de Schemas,Publ. Math. IHES 20, 24, 28, 32 (1964–1967.).Google Scholar
  9. [SGA-4]
    A. Grothendieck, M. Artin and J.-L. Verdier, Théorie des Topos et Cohomologie Étale des Schemas,Lecture Notes in Math. 269, 270, 304 (1972–73).MathSciNetGoogle Scholar
  10. [J]
    A.J. de Jong, Smoothness, Semistability and Alterations, Publ. Math. IHES 83 (1996), 51–93.zbMATHCrossRefGoogle Scholar
  11. [M-S]
    A. Merkurjev and A. Suslin, Norm Residue Homomorphism and K-cohomology of Severi-Brauer Varieties., Math USSR Izv. 21 (1983), 307–340.CrossRefGoogle Scholar
  12. [Me]
    A. Merkurjev, On the Norm Residue Homomorphism for Fields, Amer. Math. Soc. Transl. 174 (1996).Google Scholar
  13. [M]
    J. Milne, Étale Cohomology, Princeton University Press, 1980.zbMATHGoogle Scholar
  14. [N-S]
    Yu. Nesterenko and A. Suslin, Homology of the General Linear Group over a Local Ring and Milnor K-Theory, Izv. AN SSSR 53 (1989), 121–146.zbMATHGoogle Scholar
  15. [Nis]
    Ye. Nisnevich, The Completely Decomposed Topology on Schemes and Associated De-scent Spectral Sequence in Algebraic K-Theory,Algebraic K-Theory: Connections with Geometry and Topology, Kluwer Acad. Publ., 1989.Google Scholar
  16. [R-G]
    M. Raynaud and L. Gruson, Critéres de Platitude et de Projectivité,Inv. Math. 13 (1971), 1–89.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [Su]
    A Suslin Higher Chow Groups and Étale Cohomology, Cycles, Transfers and Motivic Homology Theories (V. Voevodsky, A. Suslin and E. Friedlander, eds.), Annals of Math. Studies, 1999.Google Scholar
  18. [S-V]
    A. Suslin and V. Voevodsky, Singular Homology of Abstract Algebraic Varieties, Inv. Math. 123 (1996), 61–94.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [V 0]
    V. Voevodsky, Homology of Schemes, Selecta Math. 2 (1996), 111–153.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [V 1]
    V. VoevodskyCohomological Theory of Presheaves with Transfers, Cycles, Transfers and Motivic Homology Theories (V. Voevodsky, A. Suslin and E. Friedlander, eds.), Annals of Math. Studies, 1999.Google Scholar
  21. [V 2]
    V. Voevodsky, Triangulated Category of Motives over a field,Cycles, Transfers and Motivic Homology Theories (V. Voevodsky, A. Suslin and E. Friedlander, eds.), Annals of Math. Studies, 1999.Google Scholar
  22. [V 3]
    V. Voevodsky The Milnor Conjecture, Preprint, Max-Planck-Institut fur Math. (1977).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Andrei Suslin
    • 1
  • Vladimir Voevodsky
    • 2
  1. 1.Department of MathematicsNorthwestern UniversityEvanstonUSA
  2. 2.School of MathematicsThe Institute for Advanced StudyPrincetonUSA

Personalised recommendations